
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering
Centre of Computer Graphics and Data Visualization

MVE - 2
Visualization library

Miroslav Vavruška, Milan Frank
23. 5. 2005 (Version: alfa-4)

 MVE 2 - Visualization library (Version: alfa-4)

Contents
1.Introduction... 3
2.Visualization data model... 3

2.1.Datasets..3
2.2.Cells... 3
2.3.Attributes... 5
2.4.Types of Datasets... 5

3.Visualization library.. 6
3.1.Implemented data structures.. 6

3.1.1.Basic data types..7
3.1.2.Data type conversions.. 8
3.1.3.Support classes... 8
3.1.4.Datasets.. 8
3.1.5.XML data structures serialization.. 9

3.2.Using of data structures... 10
3.2.1.Basic data types..10
3.2.2.DataSets..10

RegGrid2D... 10
UnstrGrid..11
SliceSet...12
Mesh... 12

3.3.Creation of user data structure... 12
3.3.1.Mandatory overriding...12
3.3.2.Possible overriding...13
3.3.3.Creation of DataSets.. 14

 2 / 15

MVE 2 - Visualization library (Version: alfa-4)

1. Introduction
Together with MVE-2 development started development of Visualization library that would be
certain standard and common base for developers and researchers in the area of computer graphics,
data visualization and image processing. This document serves to demonstrate principles and design
of Visualization library.
It is hard to design and implement a system of data structures for computer graphics and data
visualization from scratch. Therefore we were inspired by the data model used in VTK
(Visualization ToolKit developed by Kitware Inc.). The MVE-2 structures are more general and
more “object-like”. Many differences arises from C#/.NET and C++ environments.

2. Visualization data model
Beside algorithms that pose functionality, perform no less important role also several data.
Visualization environments arose as reply to demand for processing of huge data volume, that
wasn't possible efficient process, analyse and represent. Orbital space stations producing terabytes
of data every day, laser scan systems generating 500.000 of points every 15 seconds, super
computers forecasting weather for whole planet, New York's stock exchange working with 333
million transactions every day – this all are areas, that couldn't exist without visualization. Now is
very important to design efficient data structures for data storage and access.
Data structures should be:

• compact – visualization data tends to be large, so we need compact storage schemes to minimize
computer memory requirements.

• efficient – data must be easily and quickly accessible, we want to retrieve and store data in
constant time (i.e. independent of data size).

• simple – simplicity makes structures easier to understand and use, and therefore, optimal.

2.1. Datasets
Data objects in the visualization system are called datasets. The dataset is an abstract form, consists
of two pieces: an organizing structure and supplemental data attributes associated with the
structure.

Structure has certain topology and geometry. Topology is the set of properties invariant under
certain geometric transformations (rotation, translation, and nonuniform scaling). Geometry is the
specification of position in 3D space. The structure of dataset consists of cells and points. The cells
specify the topology, while the points specify the geometry.
The attributes are supplemental informations associated with the structure, therefore with points or
cells. Typical attributes include scalars, vectors, normals, texture coordinates, tensors, and user-
defined data.

2.2. Cells
Cells are the fundamental building blocks of visualization systems. A dataset consists of one or
more cells. Cells are defined by specifying a type in combination with an ordered list of points. The
ordered list, often referred to as the connectivity list, combined with the type specification,

 Visualization data model 3 / 15

 MVE 2 - Visualization library (Version: alfa-4)

implicitly defines the topology of the cell. The x-y-z point coordinates define the cell geometry.
Cells can be primary or composite. Composite cells consist of one or more primary cells, while
primary cells cannot be decomposed into combination of other primary cell types.

Figure 1: Topological element tetrahedron with associated geometry.

Tetrahedron is defined by the ordered list of 4 points. The topology of this cell is implicitly known:
we know that (1,2) is one of the 6 edges of the tetrahedron and (1,2,3) is one of its 4 faces.

Besides these types, many other potential cell types exist. There is a basic set of most often used
cells. They were chosen for their qualities and practical using in many areas.

 Visualization data model 4 / 15

Figure 2: Cell types.

0

1

Line
0

1

PolyLine

2
3

n-1

n
0

1

Triangle
2

0

1

TriangleStrip
3

5

n-1
2

4
n

0

1

TriangleFan

n

2

3

Tetrahedron

0

1

2

3
1

Polygon

0

1 2

3

4
n-1n

Slice (n-PolyLines)

0

1 2

3

4 0

5

1

2
3

Pixel

0

1 2

3

0

1

2

3

1

PointIndex
5
1
3
0

PointList
[x

0
, y

0
, z

0
]

[x
1
, y

1
, z

1
]

[x
2
, y

2
, z

2
]

[x
3
, y

3
, z

3
]

[x
4
, y

4
, z

4
]

[x
5
, y

5
, z

5
]

 Cell: Tetrahedron Associated geometry

MVE 2 - Visualization library (Version: alfa-4)

2.3. Attributes
Attribute data is an information associated with the structure of the dataset. Typical attribute include
temperature or velocity at a point, mass of a cell, or heat flux into and out of a cell face.

There is a basic set of most often used attributes. They were chosen for their qualities and practical
using in many areas.

2.4. Types of Datasets
A dataset consists of an organizing structure plus associated attribute data. The structure has both
topological and geometric properties and is composed of one or more points and cells. A dataset is
characterized according to whether its structure is regular or irregular.
A dataset is regular if there is a single mathematical relationship within the composing points and
cells. If the points are regular, then the geometry of the dataset is regular. If the topological
relationship of cells is regular, then the topology of the dataset is regular. Regular (or structured)
data can be implicitly represented, at great savings in memory and computation.

Irregular (or unstructured) data must be explicitly represented, since there is no inherent pattern that
can be compactly described. Unstructured data tends to be more general, but requires greater
memory and computational resources. We typically use unstructured datasets to storage data only
when absolutely necessary.

 Visualization data model 5 / 15

Figure 3: Attribute types.

value

Scalar Vector

[x, y, z]

Normal

TextureCoordinates Matrix

[Nx, Ny, Nz]
|N| = 1

2D: (u, v)
3D: (u, v, w)

Texture

[a11 a12 a13

a21 a22 a23

a31 a32 a33
]

 MVE 2 - Visualization library (Version: alfa-4)

Figure 4: Dataset types.

3. Visualization library
The Visualization library is a component of MVE-2 system. In this library there are implemented
basic data types such as points, cells, attributes and datasets. This chapter describes principles and
design of Visualization library, data structures summary, data types conversions, XML
representation and finally creating of user data structures.

3.1. Implemented data structures
Extensive recognition should proceed introduction of a new data type. Some useful data structure
may already exist. Existence of duplicity in data structures is very contra productive and result into
incompatibility of modules. In this chapter we describe basic set of data types, that have been
already implemented.

 Visualization library 6 / 15

RegGrid2D

Structured Regular 2D grid

RectilinearGrid2D

Structured Semiregular 2D grid

NonRegGrid2D

Structured Iregular

UnstrGrid

Unstructured Iregular

MVE 2 - Visualization library (Version: alfa-4)

3.1.1. Basic data types
The following picture shows the hierarchy of Visualization basic data types. Each of them
implements IdataObject interface. Therefore it is possible to send these basic data types between
modules. Because processing of objects includes relatively big overhead, all of these data types are
implemented as structures. The data types hierarchy is attainment by inheritance of several
interfaces. Structure implements corresponding interface according to into which data type category
it belongs. For example all points implement IPoint interface, cells implement ICell etc.

Note: there are implemented another important, generally used and helpful data types in the
Numerics library.

 Visualization library 7 / 15

Figure 6: Diagram of Numerics library data types.

IDataObject

Scalar IVector

Vector2D Vector3D VectorND

Numerics

Figure 5: Diagram of Visualization library basic data types.

IDataObject

IPoint

Po
in

t2
D

Po
in

t3
D

Po
in

tN
D

ICell

Tr
ia

ng
le

Tr
ia

ng
le

St
rip

Tr
ia

ng
le

Fa
n

Te
tra

he
dr

on

Li
ne

Po
ly

Li
ne

P
ol

yg
on

Sl
ic

e

IG
rid

C
el

l
Pi

xe
l

IAttribute

Te
xt

ur
eC

oo
rd

C
ol

or
R

G
BA

IN
ei

gh
bo

r

IN
or

m
al

N
or

m
al

2D

N
or

m
al

3D

N
or

m
al

N
D

Ve
rte

xN
ei

gh
bo

r

Tr
ia

ng
le

N
ei

gh
bo

r

Visualization

interface

structure

class

abstract class

Note

 MVE 2 - Visualization library (Version: alfa-4)

3.1.2. Data type conversions
Sometimes we need the type casting of one to another data type. Then we use data type conversions.
If there is no data loss (for example Point2D → Point3D), it is used implicit conversion and there's
not necessary to indicate name of type whereon we overtype. Reversely, if there is some data loss
(for example Point3D → Point2D), it is used explicit conversion and we must launch the name of
target type. Explicit conversion is also used for some specific cases (Vector → Normal) when user
must be aware of conversion reason.

Implemented conversions:
 Point2D → Point3D → PointND – implicit
 Point2D ← Point3D ← PointND – explicit
 Vector2D → Vector3D → VectorND – implicit
 Vector2D ← Vector3D ← VectorND – explicit
 Normal2D → Normal3D → NormalND – implicit
 Normal2D ← Normal3D ← NormalND – explicit
 Point ↔ Vector – implicit
 Vector → Normal – explicit
 Normal → Vector – implicit
 Scalar ↔ double – implicit
 ColorRGBA ↔ System.Drawing.Color – implicit

3.1.3. Support classes
The following picture shows the hierarchy of Visualization support classes.

 Transform3D – general transformation of 3D object
 UniformDataArray – one-dimensional homogenous static array of data objects
 UniformDataArray2D – two-dimensional homogenous static array of data objects

3.1.4. Datasets
Following data structures represent variety of logical ordering of basic data types. Each element can
have any attributes. The attribute is with the point or cell associated by the index.

 Visualization library 8 / 15

Figure 7: Diagram of Visualization library support classes.

DataObject

AbstractTransform MveArray

UniformDataArray UniformDataArray2D

Visualization – support classes

Transform3D

IDataObject

MVE 2 - Visualization library (Version: alfa-4)

3.1.5. XML data structures serialization
MVE-2 directly supports XML data structures serialization. The format XML was chosen for its
high informative content, easy readibility and enlargement. Because XML is the text format and use
tags for data separation, it tends to be large. MVE-2 expects XML data serialization for illustration
and readibility, not for storage of large data volume. By the reason of memory requirements
decrease we work with XML files sequential.
Modules for XML serialization are implemented in the MVE-2 core. For saving data into XML is
used XmlSaver module, for data reading is used XmlLoader. Each of the data structure must
implement IDataObject interface. There's declared WriteData() abstract method for data saving and
ReadData() method for data reading. These methods must be implemented by the author of specific
data structure.
The following example shows storage of Point3D data type. The node libraries includes the list of
libraries, that are necessary for data dype creation. In the event of basic data types this node
containts the single name of library. The attribute type of node data is corresponding to data type
name and the node data containts actual data. Modules XmlSaver and XmlLoader manage the file
header, nodes dataobject, libraries and the node data with its attribute type. The content of data
node is fully under control of author of specific data structure.

 Visualization library 9 / 15

<?xml version="1.0" encoding="windows-1250"?>
<dataobject>
 <libraries count="1">
 <lib>Visualization.dll</lib>
 </libraries>
 <data type="Point3D">1.5 -2.8 1.2</data>
</dataobject>

Figure 8: DataSets of Visualization library.

DataSet

StructGrid UnstrGrid

SliceSet Mesh

Visualization – DataSets

Grid2D

DataObject

RegGrid2D

UnstrGridEigCell

TriangleMesh TriangleStripMesh

IDataObject

 MVE 2 - Visualization library (Version: alfa-4)

3.2. Using of data structures
This chapter describes priciples of working with implemented data structures.

3.2.1. Basic data types
Using of basic data structures is very simple. The ToString() method is overriden for all data
structures. Therefore we can simply get useful information about it. Data structures which contain
array or look like array, have implemented access through indexer. The following example illustrate
these situations.

In cases where is it suitable and possible, there is the conversion implemented. The following
example describes implicit conversion Point2D → Point3D:

The next example shows the using of explicit conversion Point3D → Point2D:

3.2.2. DataSets
RegGrid2D
Description: this dataset represents a structured regular rectangular grid, that consists of pixels.
Each pixel is created by four points. We access to points and pixels through indexes. With each
point or pixel can be associated a number of attributes. The grid is given by resolution (width,
height), which is the count of pixels in the x- and y-axis direction. The number of grid pixels is then
width x height, while the number of points is (width + 1) x (height + 1). This dataset can be used
for example for picture representation (bitmap).
Containts:

 points and pixels - logically only. Because the grid is structured, the points and pixels can
be implicitly determinated and needn't to be physicaly stored in the memory.

 pixels and points attributes – as uniform homogenous two-dimensional array
Summary of basic methods:

 AddCellAttrs(), GetCellAttrs() – operations with cell attributes
 AddPointAttrs(), GetPointAttrs() – operations with point attributes
 GetPoint() – returns the point determinated by indices in the grid

 Visualization library 10 / 15

Triangle tri = new Triangle(0, 2, 4); // creation of structure
Console.WriteLine(tri); // print: Triangle: [0, 2, 4]
Console.WriteLine(tri[1]); // print: 2
tri[1] = 3; // use of indexer
Console.WriteLine(tri); // print: Triangle: [0, 3, 4]

Point3D p3 = new Point3D(1.5, 2.3, 3.8); // creation of structure
Console.WriteLine(p3); // print: Point3D: [1.5; 2.3; 3.8]
Point2D p2 = (Point2D) p3; // explicit conversion
Console.WriteLine(p2); // print: Point2D: [1.5; 2.3]

Point2D p2 = new Point2D(1.5, 2.3); // creation of structure
Console.WriteLine(p2); // print: Point2D: [1.5; 2.3]
Point3D p3 = p2; // implicit conversion
Console.WriteLine(p3); // print: Point3D: [1.5; 2.3; 0]

MVE 2 - Visualization library (Version: alfa-4)

Example: operations with the RegGrid2D

First we create the grid with given proportions and we create uniform two-dimensional array, which
will containts pixel attributes. For the association of attributes with pixels we use method
AddCellAttrs(). If we want to get the attributes of certain pixel, we use the GetCellAttrs() method.
For manipulation with point attributes there are analogous methods.

UnstrGrid
Description: this dataset is more general than RegGrid2D, which works with pixels only. UnstrGrid
is able to contain arbitrary cell types. However, the memory requirements are greater. UnstrGrid has
no internal structure. Data must be represented explicitly and must be physical stored in the
memory. Indexing in this dataset is linear, we use one index only.
Containts:

 points – uniform one-dimensional array (accessible through Points property).
 cells – a table of uniform arrays
 point attributes – a table of point attributes
 cell attributes – a table of cell attributes

Summary of basic methods:
 Point – a property for access to points array
 AddCells(), GetCells(), RemoveCells() – manipulation with cells
 AddPointAttrs(), GetPointAttrs(), RemovePointAttrs() – manipulation with point attributes
 AddCellAttrs(), GetCellAttrs(), RemoveCellAttrs() – manipulation with cell attributes

 Visualization library 11 / 15

RegGrid2D rg = new RegGrid2D(10, 20);
UniformDataArray2D attrs = new UniformDataArray2D(typeof(ColorRGBA),10,20);
attrs[0,0] = new ColorRGBA(255, 0, 0);
rg.AddCellAttrs("ColorRGBA", attrs);
UniformDataArray2D myAttrs = rg.GetCellAttrs("ColorRGBA");
Point2D point = rg.GetPoint(5, 5);

Figure 9: Structure of RegGrid2D DataSet.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

1,0

[2,7]

…

2,0 …

3,0 …

4,0 …

5,0 …

6,0 …

7,0 … … … … … … … … 7,9

he
ig

ht
 =

 8

width = 10

[2,7] [2,8]

[3,7] [3,8]

detail pixel

points

RegGrid2D

 MVE 2 - Visualization library (Version: alfa-4)

Example: operations with the UnstrGrid

SliceSet
This dataset is inherited from UnstrGrid. Principle of SliceSet is similar to UnstrGrid, but there is
one diference. SliceSet can contain Slices as cells only.

Mesh
Mesh is similar to SliceSet. Mesh can contain Triangles, TriangleFans, TriangleStrips, Lines and
PolyLines only.
Mesh has two childs:

 TriangleMesh – can contain Triangles only.
 TriangleStripMesh – can contain TriangleStrips only.

3.3. Creation of user data structure
The Visualization library includes rich offer of data structures, which mostly suffices. This basic set
of data structures can be arbitrary expanded. This chapter describes how to create user defined data
structure. All of data structures implement IDataObject interface, which is a component of MVE-2
core. Therefore all of data structures can be sended between modules. Additional each of points
implement IPoint interface, cells implement ICell, attributes IAttribute interface and all of datasets
ihnerit from the abstract class DataSet. Thereby in data structures is created hierarchy.

3.3.1. Mandatory overriding
Each of data structure must implement IDataObject interface, which declares following methods:

 public abstract void WriteData(XmlTextWriter xmlTextWriter);
This method is used by XmlSaver module for saving data into XML. XmlSaver module finds out

 Visualization library 12 / 15

UnstrGrid ug = new UnstrGrid();
// create and add points array into the DataSet
UniformDataArray points = new UniformDataArray(typeof(Point3D), 4);
points[0] = new Point3D(0, 0, 0);
points[1] = new Point3D(0.5, 1, 3.2);
points[2] = new Point3D(-1.5, 4.8, 3.2);
points[3] = new Point3D(2.2, 3.6, -1.4);
ug.Points = points;
// create cells array
UniformDataArray cells = new UniformDataArray(typeof(Triangle), 2);
cells[0] = new Triangle(0, 1, 2);
cells[1] = new Triangle(3, 0, 1);
ug.AddCells("Triangle", cells);
// add cell attributes
UniformDataArray cellAttrs = new UniformDataArray(typeof(ColorRGBA), 2);
cellAttrs[0] = new ColorRGBA(255, 0, 0);
cellAttrs[1] = new ColorRGBA(0, 255, 0);
ug.AddCellAttrs("Triangle", "ColorRGBA", cellAttrs);
// remove cell attributes
Console.WriteLine(ug);
ug.RemoveCellAttrs("Triangle", "ColorRGBA");
// remove cells
ug.RemoveCells("Triangle");

MVE 2 - Visualization library (Version: alfa-4)

a library list to data type composition and write this list into the file. Own data of structure are
written into the file through WriteData() method.

 public abstract void ReadData(XmlTextReader xmlTextReader);
This method is used by XmlLoader module. It reads data from XML and works analogous to
WriteData() method. It is possible manually edit data in the file by user because data format is
human readable and transparent. Therefore it is suitable have in mind and - for example - use
Trim() method for removing all white characters from begin and end of the string.

 public abstract DataObject DeepCopy();
Method for deep copy of instance. Returned object contains identical data but allocates another
memory space.

 public abstract bool CheckConsistence();
This method is important for complicated data structures in which there can be some
unconsistency. For example a triangle with one index out of bounds, a normal with size greater
than 1 +/- epsilon etc. In these cases CheckConsistence() method returns false and print info
about unconsistency on standard output using Console.WriteLine(). Also it is possible in this
method print some warnings although true value is returned - in case that data are consistent but
something there isn't absolutely correct.

3.3.2. Possible overriding
It is suitable to override the ToString() method.

Sometimes it is useful to implement implicit conversion. For example Point2D → Point3D:

 Visualization library 13 / 15

public override string ToString()
{
 return "Point3D: [" + this.X + "; " + this.Y + "; " + this.Z + "]";
}

public static implicit operator Point3D(Point2D p)
{
 return new Point3D(p.X, p.Y, 0);
}

string[] coordinates = xmlTextReader.ReadString().Trim().Split(' ');

<?xml version="1.0" encoding="windows-1250"?>
<dataobject>
 <libraries count="1">
 <lib>Visualization.dll</lib>
 </libraries>
 <data type="Point3D">1.5 -2.8 1.2</data>
</dataobject>

Begin of data writing through WriteData() method of
concrete data structure. Method WriteData() is called from
XmlSaver module.

End of data writing through
WriteData() method, remain
is written by XmlSaver module.

 MVE 2 - Visualization library (Version: alfa-4)

And sometimes we need also explicit conversion. For example Point3D → Point2D:

Data structure can contain array as field. There are also structures with array character (but their
internal structure don't contain array). For example the Triangle has 3 fields named V1, V2, V3,
which determine vertices of triangle. We can imagine that these 3 fields create one array. In such a
case it is suitable to implement indexer (a special property of object) for this structure.

Indexer is a property. So it can contain get and set section.

3.3.3. Creation of DataSets
One compound data structure can be distributed into a few libraries. When we save data into XML
format, the node libraries must contain list of all used libraries.

 Visualization library 14 / 15

public static explicit operator Point2D(Point3D p)
{
 return new Point2D(p.X, p.Y);
}

Triangle tri = new Triangle(0, 2, 4); // creation of structure
Console.WriteLine(tri); // print: Triangle: [0, 2, 4]
Console.WriteLine(tri[1]); // print: 2
tri[1] = 3; // use of indexer
Console.WriteLine(tri); // print: Triangle: [0, 3, 4]

public int this[int index]
{

get
{
 switch (index)
 {

case 0 : return V1; break;
case 1 : return V2; break;
case 2 : return V3; break;
default: throw new MveException("Index out of range...");

 }
}
set
{

 switch (index)
 {
 case 0 : V1 = value; break;

 case 1 : V2 = value; break;
 case 2 : V3 = value; break;
 default: throw new MveException("Index out of range...");
 }
}

}

MVE 2 - Visualization library (Version: alfa-4)

This node is written automatically (as well as whole file header) by XmlSaver module. Each of data
structure contains its own libraries list named libNames. Into this list is automatically added the
name of structure base library. If we want add a new library name into libNames list, we use
AddLibName() method:

For XML data reading we use XmlLoader module. This module reads the libraries list from the file,
creates object and calls ReadData() method. If we need create some object saved in XML, at first
we must find the type in assembly. For this we use the static method Globals.FindType():

If the structure isn't found in the libNames list, MVE-2 searchs all available libraries, which is much
slower. That is the reason why the list libNames is saved into XML file.

 Visualization library 15 / 15

<?xml version="1.0" encoding="windows-1250"?>
<dataobject>
 <libraries count="2">
 <lib>Visualization.dll</lib>
 <lib>Numerics.dll</lib>
 </libraries>
 <data type="UnstrGrid">
 ...
 </data>
</dataobject>

public void AddLibName(string libName)
public void AddLibName(IDataObject dataObject)

public static Type FindType(IEnumerable libNames, string typeName)

