
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering
Centre of Computer Graphics and Data Visualization

MVE - 2
Handbook

Draft version

Milan Frank and coll.
29/06/05 (Version: beta-2)

 MVE-2 Handbook (Version: beta-2)

Table of Content
1.Foreword..2
2.Introduction... 2

2.1.MVE-2 structure.. 3
3.Module map execution engine...3
4.Module Creation.. 5

4.1.Quick start..5
4.2.Module API reference..6
4.3.Module setup creation..9

5.Data type creation.. 10

1. Foreword
During my Ing, (Msc.) studies at the Computer Graphics and Data Visualization prof. Skala
introduced to me a principle of modular pipeline-based data processing. I was impressed by the
simple, genial idea of interconnection of several well defined modules together to solve a problem.
Those times an object-oriented programming was my hobby. Thus, an idea of object-oriented
modular system using modern programming technology infested my mind. Several years later this
idea is realized in the form of MVE-2.

Milan Frank

2. Introduction
MVE-2 is a modular environment based on data-flow principle. It offers general and easy-to use
interface for creation of modules (active code) and data objects that can be shared among modules.
Core of the system is a runtime with interesting features that allows good module interconnection
capabilities. Two most prominent features are cyclic interconnection and module driven sub-map
execution.

There are two ways how to define a module interconnection. The first one is via GUI (MapEditor).
It is intuitive graphical interface that allows full control on the module map. The GUI generates a
XML representation of a module map that can be edited manually by arbitrary text editor. The XML
representation can be executed directly by RunMap utility from the command line.

The MVE-2 system is rewritten from scratch and does not have a single piece of code common with
MVE developed in 1996. This is mostly due to platform change, from Win32 to .NET. Backward
compatibility is planned by a set proxy modules. But, there will be a problem of data conversion,
which means a huge memory and time efficiency overhead.

Huge difference between the recent version and the new version lies in the generality of the core.
Previous MVE (1996) system had a set of build-in data types in the core. It was very difficult to add
a new one. MVE-2 has no core data types. It offers only a abstract base class (and an interface) for
all data types. Thus any module library can define its own data types.

The generality of the core evoke a thought that the MVE-2 core is not only a “visualization”

 Introduction 2 / 10

MVE-2 Handbook (Version: beta-2)

environment. It can be applied to a variety of problem solution that have a data-flow nature. It
depends only on a particular module library, its data types and modules. For example, a set of
modules for text processing can be easily implemented.

However, there is a need to define a set of common data types to allow module developers create
modules compatible with each other. That is why we offer a Numerics and Visualization library that
contains a set of basic data set for Mathematics, Visualization and Computer Graphics.

Design of Visualization library is similar to VTK (Visualization ToolKit developed by
Kitware Inc.). The MVE-2 structures are more general and more “object-oriented”. Many
differences arise from C#/.NET and C++ environments.

2.1. MVE-2 structure
Following picture (Figure - 1) demonstrates the general structure of MVE-2 system. The Core
provides base classes for modules and data structures and module management system (runtime).
Particular modules and data structures are implemented in modules libraries. They depend on Core
and may cooperate with each other.

Figure 1: This figure illustrates a general structure of MVE-project. Each
sub-block represent one .NET assembly.

The frond-end parts allows to use MVE by non-programmer users. The RunMap provides command
line interface to execute a module map defined in XML file. The MapEdior is user friendly GUI that
allows intuitive editing and executing of module maps. The MMDoc is a tool for automatic
generation of modules and data structures documentation.

3. Module map execution engine
By word of graph theory a module map is a directed multigraph consisting of modules (nodes) and
interconnections (directed edges). If there are no edges leading to a module, the module is called
source module. If there are no edges leading from a module, the module is called terminal module.
If a module have edges leading from the module and each one starts in port marked as
non-evoke-update, the module is also terminal module. If there is a module without any connection,
the module is also considerer as a terminal module. All other modules are called filters.

One module map execution is defined as correct execution of each terminal module. Correct
execution of a module means that a module is executed when all input data are ready on its

 Module map execution engine 3 / 10

MveCore

RunMap MapEditor MMDoc

Numerics Visualization ...

Frond end (command line, GUI, doc-generator)

System core – runtime and module management

Module and data structure libraries

 MVE-2 Handbook (Version: beta-2)

auto-update ports. The only exception are DelayModules (will be explained later). This simple rule
gives us a recursive formula to execute the whole map. The recursive descent is called an update.
The ascending process is called execution. Obviously, the update process ends with source modules
also terminal modules are executed latest.

The place of connection is called port. Each connection starts at one output port (the place the data
came from) and ends at one input port (the place the data got to). Number of connections can start at
output port. Only one connection can be connected to an input port. Each port has a type that accept
or is its source. Thus there is a type checking mechanism that allows compatible connections only.

The DelayModule is a special module that acts as a memory with initialization. It returns value
from N-1 step (of the map execution) connected to its input port. In the first step it returns the value
connected to the initial port. This module is handled differently by the runtime than ordinary
modules. It allows a cyclic connection.

Another way to create a correct cycle is using a special output port, marked as non-evoke-update. In
short, it means the port has its initial value and reading from this port (data request) never causes
execution (validation) of the module.

If we remove all connections that end in input ports of delay modules or end in non-evoke-update
input ports, the module map graph must become a tree.

Input ports can be marked as non-auto-update (auto-update is implicit). The implicit auto-update
behaviour means that all input data are ready before execution of the module. The non-auto-update
behaviour means that port gives-up this implicit data preparation. On the other hand, the port can
request data at any time during its execution (by UpdateInput call). Thus, a module can control
execution of the part of the module map that is connected to its non-auto-update port. We call this
part a sub-map.

The opposite for non-auto-update input port is the previously mentioned non-evoke-update output
port. Its feature is that it always has a valid value and reading of this value never causes execution of
the module.

The primary reason for introducing non-evoke-update and non-auto-update port is shown on the
following example. The non-evoke-update port can be a source of data for a module driven
sub-map. The sub-map starts at the non-auto-update port and is driven by it. See the following
picture.

The module map on the picture draws a 3D graph of a z= f x , y function in the area limited by
the Limits module. The whole graph is drawn during one map execution. It means, the terminal
module runs only once as well as its source. On the other hand, the z= f x , y module runs
n-times. The n depends on the GraphCreator. The GraphCreator exposes the x and y variables on

 Module map execution engine 4 / 10

z = f (x, y)

GraphCreator
Limits GraphRender

Independent
variables
x and y

Dependent value z

3D graph Area to be
displayed

 non-auto-update non-evoke-update

MVE-2 Handbook (Version: beta-2)

non-evoke-update output port. Then the GraphCreator calls UpdateInput on the non-auto-update
input port. It causes execution of the z= f x , y  module. Then the GraphCreator reads the input
port and saves the value to its internal structure and repeats with different x, y values. After creation
of enough samples it returns some representation of the generated 3D graph. Finally the
GraphRenderer is executed.

It is obvious that a sub-map can contain a module with non-auto-update port. Thus, we obtain a
sub-map of a sub-map. This is the reason for introducing the map-level term. All terminal modules
are of level zero. The rest of module-map is marked to satisfy following rules.

• Source module have to be of lower level than target module if and only if the input port is
non-auto-update.

• Source module can be of higher level than target module only if the target module is a
DelayModule or source port is non-evoke-update.

• Other interconnections have to be between modules of the same level.

The marking of module levels is fully automated and the consistency is checked before execution. If
there is some inconsistency user is notified. The map level can be displayed in the MapEditor.

The execution mechanism is rather complicated due to allowed cycles, DelayModules,
non-auto/evoke-update ports. The interconnection possibilities are huge. Current version of the
runtime should handle all combinations that “make sense”. But, nothing is perfect. If our user find
some interconnection that should work but does not, please do not hesitate and inform someone
from MVE-2 developer team.

4. Module Creation
Modules in the MVE-2 are organized in assembly/assemblies (this is a .NET term). Each assembly
can contain arbitrary number of modules, data objects and others .NET entities organized in
arbitrary number of namespaces. The MapEditor shows all public modules in all assemblies loaded
in library directories (see the MveCore.config file). The MapEditor shows the modules in a tree
hierarchy organized by namespaces.

4.1. Quick start
In this chapter we describe how to create a simple module. It is something like classic “hello world”
application. This module prints input data as a string using the standard ToString() method.

Each module has to be derived from Zcu.Mve.Core.Module abstract class and has to override
constructor and Execute method. The constructor typically creates ports and of course, may initialize
user data. The Execute method implements the “activity” of the module.

In this particular example, the constructor creates one input port named input that accepts any
instance of IDataObject. The first line in Execute method reads data from input port and the second
one prints them on the standard output (console).

 Module Creation 5 / 10

 MVE-2 Handbook (Version: beta-2)

Let's have a more detailed look on this example. The ConsolePrinter class is derived from an
abstract class named Module defined in the system core. This way it became understandable for the
runtime and visible via ModuleView in MapEditor. It is clear that a module class has to be public,
otherwise is inaccessible from the outside of the assembly.

The standard place where to create ports is the constructor. Creation of port itself is realized by
AddInPort and AddOutPort. The first parameter of these methods is a port name. It is a
module-unique identifier of particular port. The second parameter defines data type that is accepted
by the port. The runtime checks whether interconnection makes a type conflict. In this particular
example we accept instances of all classes or structures that implement IDataObject. Thus we
accept everything because all data objects have to implement this interface (or to be derived from
DataObject, which implement IDataObject interface itself).

The Execute method is an implementation of the module activity. In the first line GetInput method
reads data from port the named “input”. This method returns the IDataObject. Thus, usually we
have to typecast it. Now we have a reference to the incoming data in Execute method. These data
are processed in the second line where we print them by standard .NET method call.

It is very important to note that we must not modify the incoming data because they can be shared
among number of modules. The only module permitted to modify them is the source module of the
data. This is a weak point of all typical implementation of the pipeline systems. Due to performance
and complexity reasons we did not introduce some permissions rules system that can assure data
object read only access. Therefore it is only a matter of decency of the the developer not to modify
the incoming data. Following example shows the typical use of GetInput method.

The way how to expose data to an output port is via SetOutput call. This method lets MVE runtime
know that new data are ready. If the SetOutput is not called the runtime interprets the previously
exposed data as “still valid and not modified”. If such thing happened in the first execution the null
reference exception will be probably thrown by a module while reading content of such port.

4.2. Module API reference
Each module is derived from Zcu.Mve.Core.Module. This base class is quite complex and contains
number of methods to be called, number of methods to be overridden and several events that can be
used.

 Module Creation 6 / 10

public class ConsolePrinter : Zcu.Mve.Core.Module
{
 public ConsolePrinter()
 {
 this.AddInPort("input", typeof(Zcu.Mve.Core.IDataObject));
 }

 public override void Execute()
 {
 IDataObject data = (IDataObject) GetInput("input");
 Console.WriteLine(data.ToString());
 }
}

ScalarNumber num = (ScalarNumber)GetInput("input");

MVE-2 Handbook (Version: beta-2)

A module exist as long as whole module map. It means that its constructor is called when the
module is added to a module map. The module is disposed when it is removed from a map or a
module map is disposed at all. The instance of a module exists during unspecified number of
module map runs. Thus, it has to be written with respect to this fact.

4.2.1. Mandatory Overriding
Execute

Main method that implements activity of an object. Typically reads an input and generates an
output.

Constructor
An implicit constructor is a typical place to create ports and to do any other initialization. See
also SimulationStart and ModuleCreate events to do some special initialization.

4.2.2. Possible Overriding
InvokeSetup

This method returns an instance of ModuleSetup. This user control (ModuleSetup) is displayed in
the module setup dialog in MapEditor.

Implicit behaviour (without overriding) automatically creates a property grid that allows simple
editing of elemental properties. By overriding programmer may return its own

WriteConfig(XmlElment config)
This method can fill the xml element with arbitrary data. These data are stored by MVE runtime
in an xml representation of module map in config node .

Typical use of it is for a module specific configuration data.

It is obvious that these data should remain “small”. For example: it is recommended to save file
name of some data file but it is not recommended to save these data itself.

Implicit behaviour (without overriding) creates a subelement Properties, where all public
properties of the module are saved. For each property a subnode is created named after the
property, with attribute named "type", which contains a "ToString" result of the property type.
Text of each property elemnt is created by calling ToString upon the property value, or ToString
(null,Globals.nfi) if the Iformattable interface is implemented by property type.

ReadConfig(XmlElment config)
This method is the opposite to WriteConfig method. The config xml node contains data read
from xml representation of module map.

Default implementation of this method tries to find subelement "Properties" within which it
searches for property values. See Writeconfig for details about formatting. Tries to find
corresponding property (correct name and type) and sets its value. Only works for predefined
value types (Double, Single, IntXX, UIntXX, Boolean, Decimal) and String!

DeepCopy()
This method is used by MapEditor whenever user copy a module. (CTRL+C, CTRL+V
operation). Instance creation, name, position and orientation of a module is implemented by

 Module Creation 7 / 10

 MVE-2 Handbook (Version: beta-2)

DeepCopy of Module (base.DeepCopy()). All other data have to be handled by user.

Author of module do not have to implement this method at all but user can encounter unfriendly
behaviour of such module. The copy of such module have implicit setting.

4.2.3. Methods to be called
AddInputPort(string name, Type type, [bool required, bool autoUpdate])

This method add an input port to a module. The first parameter is locally unique identifier of the
port. The second one defines type of the port. The Type can be easily obtained by typoeof
operator. Two other parameters are optional. The required parameter define whether the absence
of connection to the port cause error during module map execution. Implicit value is true. The
autoUpdate parameter allows programmer to create input port that have control on dependent
sub-map.

AddOutputPort(string name, Type type, [bool evokeUpdate])
This method add an output port to a module. The first and the second parameters have the same
meaning as in the AddInputPort case. The last parameter is optional and allows to create
non-evoke-update port. Implicit value is true. In case of non-evoke-update port it is necessary to
give some implicit value before a module map is executed.

Constructor is not the only place were to call AddInput/OutputPort method. Ports can be added
any time except module-map execution.

GetInput(string name)
Read value of input port. Caution! Content of such data must not be modified!

SetOutput(string name, DataObject data, [bool dataSame])
Expose data at output port.

dataSame is optional flag passed to modules reading the port. It allows optimization of
calculation in case the outgoing data are the same as in previous execution call.

UpdateInput (string portName)
The port named portName has to be marked as non-auto-update. This method cause execution
of sub-map connected at particular port. After the method is finished the data are ready at
particular port.

RemoveInPort/RemoveOutPort()
This method remove a port from module. It must not be called during module map execution.

IsDataSame(string portName)
Returns true if data at port are the same as in previous module execution. See the third parameter
in SetOutput method.

ProgressInfo(float progress)
Inform runtime how the Execute of module works. Expected range is (0.0 to 1.0)

4.2.4. Events
SimulationStart/SimulationEnd

 Module Creation 8 / 10

MVE-2 Handbook (Version: beta-2)

Start/End of module map execution.

Prototype:
void SimulationStartCallBack(object source);
void SimulationEndCallBack(object source);

PortsChanged
Any change in ports configuration (add, remove, data type change). Important for MapEditor.

Prototype:
void PortsChangedCallBack(object source, Port port, PortChangeType
change);

StateChanged
Indicate the change in module state (waiting/updating/running). Important for MapEditor.

Prototyp:
void StateChangedCallBack(object source, ModuleState newState);

Connect(portFrom, portTo, allowed) / Disconnect(port)
Event is set before connection/disconnection to/from input port. It is possible to disable the
connection operation via allowed parameter.

Prototype:
void ConnectCallBack(object source, OutPort portFrom, InPort portTo, out
bool allowed)
void DisconnectCallBack(object source, InPort portTo, out bool allowed)

DataReady
Event is set after data are exposed in output port connected to input port of current module.

Prototype:
void DataReadyCallBack(object source, InPort inPort);

ModuleCreate
This event is set after the module is added into module map. The difference between constructor
and the ModuleCreate is that the instance of module map is accessible.

It is possible to cancel the module creation via throw a MveException.

Prototype:
void ModuleCreateCallBack(object source)

4.3. Module setup creation
There are two ways to create a module setup. The first one is to derive a ModuleSetup class, which
is derived from the UserControl and may contain standard WinForm content. In ModuleSetup child
it is necessary to override OnOK and OnStorno method that are called as a reaction on particular
user click.

The second way is to use implicit behaviour of the InvokeSetup method. It returns an automatically
generated PropertyGrid, which allows to modify values of module properties of a primitive data
type. It is possible to disable a property from browsing via property grid by [Browsable()] attribute.
It is also possible to define a description and a category of a property via [Description()] and
[CategoryAttribute()]. For more details see GuifiedModule in Examples library. There is also

 Module Creation 9 / 10

 MVE-2 Handbook (Version: beta-2)

possible to combine these two methods and add the PropertyGrid as a component of the
SetupDialog.

5. Data type creation
Extensive recognition should proceed introduction of a new data type. Some useful data structure
may already exist together with number of useful modules. Existence of duplicity in data structures
is very contra productive and result into incompatibility of modules.

Data type (API) have lesser number of methods than module (API) but each one is declared abstract.
Thus, overriding is mandatory. Each data object that is about to be shared among modules have to
be derived from Zcu.Mve.Core.DataObject or implement Zcu.Mve.Core.IDataObject.
Good example is ScalarNumber. It can be found in Examples source code. It is simple
representation of one scalar value. Following text explain and comment all important parts.

Private field val represent the scalar data itself. Access is possible by public Val property. Implicit
value is set in parameterless constructor. Each correct data type have to define an implicit
constructor. Otherwise, the XmlLoader and XmlSaver will not work.

ReadData and WriteData are important methods called by XmlLoader and XmlSaver.
Implementation of these methods define the process of serialization to and from XML file. The idea
is “author of data structure knows best how to efficiently and clearly transform the structure to and
from XML representation”. The ReadData method should be able to handle XML file that is not
actually written by the WriteData method.

The DeepCopy method have to allocate new memory space and copy whole content of data
structure. This method is used by DelayModules to store result of previous step.

The CheckConsistence method is important for complex data structures where some
inconsistencies may appear. (e.g. index of triangle vertex that exceed the number of points) In such
cases the method should return false and let user know there is something wrong in the data
structure. It is also recommended to put on standard output a message that explain what is wrong. It
is also possible to return true and write a warning (e.g. Collapsed triangle – data consistent but
suspicious)

There is also recommended to override ToString method. This method is used by ConslePrinter
module.

 Data type creation 10 / 10

