
University of West Bohemia in Pilsen
Faculty of Applied Sciences

Department of Computer Science and Engineering

Commenting of MVE2 library

Author: Petr Dvorak
Date: December 15 2005

~ 2 ~

MVE 2 - Commenting of MVE2 library (Version: beta-3)

2 / 13

1. Introduction

The MVE-2 provides a system how to create self-describing library of modules and data
structures. This document describes several rules, possibilities of attributes and comment
writing to fit MMDoc tool.

2. Basic terms

2.1. Attributes

The language C# allows adding of further information associated with classes, methods,
return values etc. into the compiled file. So-called attributes are the information inserted into
metadata by compiler. However the term attributes generally denotes the member variables of
the classes. Both of terms will be distinguished in this text.

The attribute is added by command:

[Name_Of_Attribute(Parameter1, Parameter2, Optional_parameter = value)]
Element_Of_Source_Code //definition of a class, method, member variable…
…

E.g.:

 [ModuleInfo("Miroslav F.", "Module is useful for cycles", IconName = „Delay.ico“)]
 public class DelayModule : Module
 {
 ...
 }

where ModuleInfo is the name of the attribute, IconName is an optional parameter and
DelayModule is an element of source code, to which the attribute belongs.

3. Attributes of library

They can be found and changed in the file named AssemblyInfo.cs. This file is
automatically created by Visual Studio. It’s useful to define at least:

• AssemblyTitleAttribute(string) – name of the library
• AssemblyDescriptionAttribute(string) – description of library
• AssemblyCompanyAttribute(string) – a company, which own a copyright
• AssemblyCopyrightAttribute(string) – copyrights

For example, see following lines taken from MVECore assembly:

[assembly: AssemblyTitle("Modular Visualization Environment 2 - Core")]
[assembly: AssemblyDescription("Assembly contains pivotal classes of MVE2.")]
[assembly: AssemblyCompany("University of West Bohemia in Pilsen, Czech Republic")]
[assembly: AssemblyCopyright("Milan Frank 2003 - 2004")]

~ 3 ~

MVE 2 - Commenting of MVE2 library (Version: beta-3)

3 / 13

4. Attributes of modules

4.1 About writing attributes

All the additional information is saved in a source code by two ways:

• attributes
• comments of source code

The attributes are optional, but it’s highly recommended to use them. They are used in
runtime (tooltips, list of modules, detail information about module etc.) as well as in
generated documentation (using by MMDoc tool). Therefore they should be brief and
apposite. Character constants can be used to a simple string formatting (e.g. in the description
of function of a module or port, which can be longer). Most frequent is \n – new line, but
naturally also a rest of the character constants can be used.

It can be added two types of attributes to the modules:

• ModuleInfoAttribute
• PortInfoAttribute

.NET standard attributes can be added to the properties of modules:

• DescriptionAttribute
• BrowsableAttribute

These are the alternative way to document the function of module instead of InvokeSetup
method. (see section Module comments). They describes all items that can be set in setup
dialog of module which contains .NET component PropertyGrid.

Note: A word attribute can be omitted. A compiler adds it automatically.

4.2 ModuleInfoAttribute

ModuleInfoAttribute provides information about a module. Attribute can be inserted
only once before a definition of a class.

It has 2 mandatory parameters (strings):

• author of a module
• a brief description of a function of a module

3 optional parameters (strings):

IconName
- A name of an icon in the compiled library, which represents the module (adding icon –

see section 4.2.1.).
- If no icon is entered, the default icon from core is used.

~ 4 ~

MVE 2 - Commenting of MVE2 library (Version: beta-3)

4 / 13

Assemblied
- The date of the version of the module (it’s entered in format RRRR-MM-DD … internally

saved as .NET type DateTime).
- If no date is entered, the date of the compilation is used.

Category
- It indicates a group, to which the module belongs.
- E.g.: a loader module (XmlLoader), a system module (DelayModule), renderer module

(Renderer).
- The module is classed into the group in the list of modules according to this attribute (not

implemented yet – now modules are shown by namespaces).
- The default value is unspecified.

E.g.:

[ModuleInfo("Miroslav F.", "Module is used for cycles", IconName =
"Delay.ico", Assemblied = "2004-06-20", Category = "System")]

4.2.1. Adding custom icon

Several steps must be completed to use custom icon. First it must be added to the project in
Solution Explorer. Next the property of this icon - Build properties - must be changed to the
value Embedded Resource. It can be found after clicking right mouse button on the icon and
choosing Properties. It ensures that the icon will be compiled with the library. At the end set
IconName to the name of the icon, when you define ModuleInfo attribute.

4.3 PortInfoAttribute

PortInfoAttribute provides information about one particular port of a module. It is allowed
to assign several of these attributes to the module according to a number of module ports.

It has 2 obliged parameters:

• name of the port – unique in a scope of the one module, must be equal to name used
during adding port in source code of module

• function of the port – a brief description of the port function

1 optional parameter:

IconName
- A name of an icon in a compiled library, which represents the port (adding see above to

section 4.2.1.).
- If no icon is entered, the default icon from core is used.
- It’s recommended to set user icon in very special cases only.

E.g.:

[PortInfo("Input", "Default value")]
[PortInfo("Output", "Delayed data")]
[PortInfo("Initial", "Initial input", IconName=“init.ico“)]

~ 5 ~

MVE 2 - Commenting of MVE2 library (Version: beta-3)

5 / 13

5. Attributes of data structures

5.1 About writing attributes

Same rules govern as in modules (see clause 4.1).

5.2 DataObjectAttribute

DataObjectAttribute provides the information about MVE2 data structure. Only one
attribute can be assigned to the class or interface.

It has 1 mandatory parameter:

• description – a brief description of the data structure

E.g.:

[DataObject("Representation of the vector in 2D")]

6. Comments of modules and data structures

6.1. About writing comments

Comments should provide a detailed and exhaustive description of parts of a module and data
structure for their users. They are the standard documentation comments
(///<summary>Comment</summary>).

It’s allowed to use also HTML tags. Most frequently used will be:

<p>Paragraph</p>

 ... new line
a bold text
<i>an italic</i>
Link

Attention: The commentaries must comply XML syntax, but also HTML. Therefore there are
space and backslash at the end of the tags
 a . In addition characters „<“ and
„>“ mustn’t be used in other meaning than in tag definition. Visual Studio omits such “not
well-formatted” comments in generated XML file. They have to be replaced with < and
> strings.

Only some of the comments are important for generating of documentation by mmdoc.exe
program. They are:

 <summary> assigned to classes
 <summary> assigned to public and protected methods, constructors, events, properties

and member variables of data structures
 <param> assigned to public and protected methods and constructors

~ 6 ~

MVE 2 - Commenting of MVE2 library (Version: beta-3)

6 / 13

 <returns> assigned to public and protected methods

6.2. Module comments

• Module class should be commented. Comments should explain:
 a purpose of the module
 potential use
 limitation given by computation
 limitation given by knowledge of application domain
 what modules can current module cooperate with
 etc.

• commentary associated with method InvokeSetup (builds module setup dialog)

 it should describe the module setup dialog for module users
 it is recommended to append a screenshot via tag

• commentaries associated with property with Description attribute eventually with

Browsable attribute set to True value

6.3. Data structure comments

• Data structure class should be commented. Comments should explain:
 what data does it represent
 description
 some pictures are useful
 limitation of data types
 limitation given by knowledge of application domain
 what definitions or theorems does it answer (e.g. in the geometric modeling Euler’s

theorem)
 what data structures does current data structure relation with
 etc.

• commentaries of particular public method, property and member variables

 they’re mainly provided for advanced users – module’s programmers
 users search here functions of data structures, which use in their modules

7. Examples

7.1. AssemblyInfo.cs

using System.Reflection;
using System.Runtime.CompilerServices;

// General Information about an assembly
[assembly: AssemblyTitle("Modular Virtual Environment 2 - Example")]
[assembly: AssemblyDescription("Example of MVE2 library")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("University of West Bohemia in Pilsen, Czech Republic")]
[assembly: AssemblyProduct("Examples")]
[assembly: AssemblyCopyright("Milan Frank 2004")]
[assembly: AssemblyTrademark("ZCU-MVE2.NET")]

~ 7 ~

MVE 2 - Commenting of MVE2 library (Version: beta-3)

7 / 13

[assembly: AssemblyCulture("")]

// Version information for an assembly consists of the following four
[assembly: AssemblyVersion("1.0.*")]

// In order to sign your assembly you must specify a key to use.
[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile("")]
[assembly: AssemblyKeyName("")]

Information used by mmdoc and showed in the resulting documentation is emphasized by bold
font.

Overview of library in the generated documentation:

7.2. Example of module

using System;
using Zcu.Mve.Core;

namespace Examples
{
 /// <summary>
 /// Source of one random scalar number.
 /// It’s double-precision floating point number in the interval <0.0, 1.0).
 /// Possibly you can define own output number.

~ 8 ~

MVE 2 - Commenting of MVE2 library (Version: beta-3)

8 / 13

 /// </summary>

 [ModuleInfo("Milan Frank", "Sample module. Source of one random scalar number.",
 IconName = "numbersource.ico", Assemblied = "2004-06-13", Category = "Example")]

 [PortInfo("Output", "Random or user defined scalar number.")]

 public class NumberSource : Zcu.Mve.Core.Module
 {

 /// <summary>
 /// Create ports.
 /// </summary>
 public NumberSource()
 {
 AddOutPort("Output", typeof (Examples.ScalarNumber));
 }

 ...
 //class body
 ...

 /// <summary>
 /// You can choose from two modes of function of module:
 ///
 /// <p>Generating of random number:</p>
 /// <p></p>
 /// <p>Generating of defined number (2.0 in this case):</p>
 /// <p></p>
 ///
 /// </summary>
 /// <returns>User control.</returns>
 public override ModuleSetup InvokeSetup()
 {
 //some code
 }

 } // NumberSource
} // namespace

Important parts are emphasized by bold font.

There is the detailed description of the module between tag <summary> at the beginning.
Notice the technique of writing down of the interval <0.0, 1.0).

The attribute ModuleInfoAttribute is below commentary. 3 optional parameters
(IconName, Assemblied and Category) are defined in it. Further there is the attribute
PortInfoAttribute. Notice that name of the port (first parameter) is same as name of port
entered during port creation in the constructor.

Next there is the definition of class of module. It is inherited from Zcu.Mve.Core.Module.
Then there is a source code, which defines function of module.

Finally there is the method InvokeSetup. The comment between tags <summary> describes
possibilities of configuration of the module through the settings dialog. HTML and inserting
of the pictures from actual directory are used here. Notice the closing of the tag <img
src="numbersource2.jpg" /> by space and backslash.

~ 9 ~

MVE 2 - Commenting of MVE2 library (Version: beta-3)

9 / 13

Overview of module in the generated documentation:

~ 10 ~

MVE 2 - Commenting of MVE2 library (Version: beta-3)

10 / 13

Module settings (InvokeSetup comment) in the generated documentation:

7.3. Example of data structure

using System;
using Zcu.Mve.Core;

namespace Examples
{
 /// <summary>
 /// It represents one scalar number (accuracy as double type in .NET).
 /// Can be shared by MVE2 modules.
 /// </summary>

~ 11 ~

MVE 2 - Commenting of MVE2 library (Version: beta-3)

11 / 13

 [DataObject("One scalar number (double)")]

 public class ScalarNumber : DataObject
 {
 /// <summary>
 /// Value carried by this data object.
 /// </summary>
 private double val;

 /// <summary>
 /// Constructor with default settings.
 /// </summary>
 public ScalarNumber()
 {
 val = 0.0f;
 }

 ...
 //class body
 ...

 /// <summary>
 /// Gets/Sets scalar vaule of this object.
 /// </summary>
 public double Val
 {
 get
 {
 return val;
 }
 set
 {
 val = value;
 }
 }

 /// <summary>
 /// Writes data object into XML file.
 /// </summary>
 /// <param name="xmlTextWriter">Xml stream.</param>
 public override void WriteData(System.Xml.XmlTextWriter xmlTextWriter)
 {
 xmlTextWriter.WriteString("" + this.Val);
 } // WriteData()

 /// <summary>
 /// User defined deep copy of this data object.
 /// </summary>
 /// <returns></returns>
 public override IDataObject DeepCopy()
 {
 ScalarNumber ret = new ScalarNumber();
 ret.Val = this.Val;

 return ret;
 }

 /// <summary>
 /// Report about data structure. It’s used for example by ConsolePrinter.
 /// </summary>
 /// <returns></returns>
 public override string ToString()
 {
 return this.val.ToString(Globals.nfi);
 }

 } // ScalarNumber
} // namespace

Important parts are emphasized by bold font.

There is a detailed description of MVE2 data structure at the beginning. Further there is a little
bit shorter attribute DataObjectAttribute.

~ 12 ~

MVE 2 - Commenting of MVE2 library (Version: beta-3)

12 / 13

Bellow is the definition of class. In this case it is inherited from data type DataObject,
which implements necessary interface IDataObject.

Finally there are definitions of member variables, constructor, methods (DeepCopy(),
ToString()) and properties (Val).
Overview of data structure in the generated documentation:

~ 13 ~

MVE 2 - Commenting of MVE2 library (Version: beta-3)

13 / 13

Members of data structure in the generated documentation:

