
West Bohemia University 
 

Faculty of Applied Sciences 
 

Department of Informatics and Computer Techniques 
 
 
 
 
 
 
 
 
 

Semestral work for 
 

Graphics Systems and Data Visualization 
 
 
 
 
 
 
 
 

Work number 5 
 

DisplaceMap 
a set of modules for MVE2 

 
 
 

Verification report 
 

 
 
 
 
 
 

Jiří Skála 
A01216 

js.1@seznam.cz 



 2

1 Common tests of all modules 
 
1.1 Module settings 
 

Each module has some internal settings which may be modified in the module setup 
dialog. The aim of this test was to proof that module settings are shown correctly in the dialog 
window and that entered settings are accepted and stored by the module. Further attention was 
paid to verify that settings are correctly saved to XML file and later correctly loaded. 

Every module was repeatedly set up to many various states and it was proved that module 
settings are always accepted, correctly saved as XML and loaded back. 
 
 
1.2 Module duplicating 
 

This test should verify module DeepCopy function. Each module was duplicated using 
Ctrl+C, Ctrl+V and it was proved that the new module has the same setting as its original. 

Nevertheless some strange behaviour of newly created modules has been discovered. It 
seems that modules inserted using Ctrl+V are not properly integrated in the map. It was not 
possible to rename them and they caused confusion in module map levels so that the map 
couldn’t be run. When the map was saved duplicated modules were not saved. This behaviour 
was observed with all modules even those that use base inherited DeepCopy method. 
 
 
1.3 XML configuration parsing 
 

Module configuration parsing should be sufficiently robust to accept even files not created 
by the module itself. That means parser must ignore unnecessary white characters, character 
cases etc. In case of error some meaningful message should be displayed. 

Each module was tested to accept XML configuration reformed in some way. Modules 
can ignore keyword cases (this holds for configuration keywords only, not for XML tags), 
additional white characters and can process all valid number formats. 

Another test was done with damaged configuration in XML files. There may be several 
types of such damage: 
 
• Incorrect XML file structure 
• Wrong configuration tag name 
• Wrong tag attribute name or missing attribute 
• Incorrect number or logical value format 
• Incorrect configuration keyword 

 
In case of incorrect XML file structure an exception is thrown already at lower layer. If 

there is a configuration tag missing then default values are set instead. For unknown tag 
(possibly typing mistake) a warning is printed into console window and tag is ignored. If file 
structure is OK but module configuration is unrecognizable an MveException is thrown with 
understandable message what went wrong. 
 
 



 3

1.4 Processing huge amount of data 
 

There is no formal limit for amount of data that modules manage to process. A test was 
carried out with 1600×1200 image large_1600x1200.jpg passed to standard module pipeline 
defined in map CalculateDisplace.xml. After several seconds the processing was successfully 
done. 
 
 
1.5 Extracting data attributes 
 

Each tested module needs to work with some data attributes. The goal of this test is to 
check how modules behave when attributes are set incorrectly or missing. Input data may not 
contain any attribute of given name or the attribute may have different type than needed. In 
this case the module tries to find some other suitable color attribute. If it succeeds a message 
is printed with name of substitutive attribute. If no attribute of required type could be found 
an exception is thrown. 
 
 
1.6 Consistency of produced data 
 

All modules were tested to produce consistent data from various inputs. Testing map is 
available in DataCheck.xml. More tests were carried out while testing function of separate 
modules, see Test*.xml maps. 
 
 
1.7 Common sense test 
 

If we pass a greyscale image (grayscale_80x60.png for example) through the standard 
pipeline in CalculateDisplace.xml map with Elevation module set to greyscale color mapping 
we should get the same picture. Actually the result is slightly different because of 
deformations during cell-to-point color interpolation and renderer perspective projection. 
 
 

2 CalculateDisplace module testing 
 
2.1 Color processing 
 

Correct color processing may be proved by RGBA_80x60.tif image. There are 4 color 
spots, one for each RGB color and one white. Please note that in the corners of the image 
there are 100% saturated colors but have some transparency. A test was performed by passing 
the image to standard ClaculateDisplace.xml map and modifying CalculateDisplace module 
settings. In the result one can see that color channels are masked correctly and alpha channel 
is supported. 
 
 
 
 



 4

2.2 Color interpolation 
 

In order to get some small amount of data that may be verified by hand RegGrid2DSource 
and RegGrid2DWatch modules have been created. Using TestCalcDispl.xml map we can 
create some random input data and hand-check the output. All point colors were interpolated 
correctly including those lying at grid edges or in corners. 

Further tests may be done on CalculateDisplace.xml map. Using interpolate_10x10.png 
image as input we should get a planar mesh at the end. The image consists of 3 chessboards 
and a 50% grey board. Each of the 4 segments should interpolate into uniform 50% intensity. 
Actually the result contains some artefacts in segment corners, where the interpolation of 
course yields different (but still correct) intensity. Interpolation effects may be studied more 
on interp_effects_80x60.png image. 
 
2.3 Very small input data 
 

We may use TestCalcDispl.xml map to check how the module deals with small data 
amounts which may be singular cases. Tests have shown that all meaningful data (down to 
1×1 input) are processed correctly. In case of senseless input like X×0 or 0×Y module throws 
an exception with a message that explains the problem. 
 
 

3 DisplaceMap module testing 
 
3.1 Regular 2D grid displace mapping 
 

Tests were carried out with TestDisplMapGrid.xml map. Input regular 2D grid was 
generated by RegGrid2DSource. Created triangle mesh point coordinates were checked by 
hand using RegGrid2DWatch and TriMeshWatch. It was proved that x and y coordinates are 
computed correctly according to grid size and position settings. Also z coordinates equals to 
point elevation multiplied by elevation factor. Triangle mesh structure may be validated 
visually using a wireframe display in TriMeshRenderer. 

Of course some singular cases may occur. If the elevation factor is zero a planar triangle 
mesh is generated with z point coordinates set to zero. In case of zero size setting resulting 
triangle mesh degrades into a plane (for X×0 or 0×Y size) or into a line (for 0×0 size) due to 
point overlaying. But it still remains consistent. If the input grid has X×0 or 0×Y cells the 
triangle mesh consists of a linear sequence of points without any triangles. If the input grid 
has 0×0 cells the triangle mesh has only a single point. With respect to DataChecker such 
mesh without any triangles is still consistent. 
 
 
3.2 Triangle mesh displace mapping 
 
 This test was performed with TestDisplMapMesh.xml map. Sample data were loaded from 
triMeshSample.tri and TriMeshAttrAdder module was used to add point attributes and discard 
z coordinates. Correct displace mapping was proved by hand using TriMeshWatch modules. If 
the elevation factor is set to zero new triangle mesh is created planar. 
 



 5

4 Elevation module testing 
 
4.1 Point elevation computing 
 

Tests were performed in TestElevation.xml map. Sample triangle mesh was loaded from 
triMeshSample.tri. Module was tested both with internal elevation vector setting and with 
external VectorSource connected. Results were checked by hand using TriMeshWatch module 
output. 

The elevation vector should define a direction in which point elevation will be computed. 
When the vector is zero it defines no direction. In this singular case all point elevations are set 
to the same level which is established to be the lowest one. All points are then painted with 
one color corresponding to the lowest elevation. This was validated on triMeshPlanar.tri 
mesh where all points lie in one plane. It is defined by the equation –1.5x – y + 4z – 4 = 0. 
With elevation vector set to (–1.5; –1; 4) all points have the same level of elevation and are 
painted in the same color. 
 
 
4.2 Color mapping 
 

Point color mapping was tested in TestElevation.xml map. Colors may be roughly checked 
visually using TriMeshRenderer. Exact verification is possible with TriMeshWatch module. 
However this is quite a challenge because it is necessary to find point elevation minimum and 
maximum, calculate the elevation of examined point and solve the color mapping scheme. As 
long as point elevation computing is proved to be correct, it is better to verify color mapping 
on some trivial case. Therefore verification was done on triMeshSample.tri mesh with 
elevation vector set to (0; 0; 1). 
 
 

5 Conclusion 
 

One significant error has been discovered during testing. DisplaceMap module computed 
wrong point coordinates when set to preserve input grid aspect ratio. The issue was fixed 
successfully. There were some more minor bugs concerned mainly with XML configuration 
saving / loading. All of them were fixed. 


