Dynamic Mesh Compression Toolkit

Libor Vasa, Oldrich Petiik, Jan Rus
16.3.2010

1 Introduction

This is basic documentation for the Dynamic Mesh Compression Toolkit (DMCT).
The aim of the toolkit is to make it easier to implement and test new algorithms
for compressing or comparing animations of triangular meshes of shared con-
nectivity (dynamic meshes).

The toolkit works with the MVE-2[FVS06] environment and consists of im-
plementations of several basic and advanced algorithms needed for construction
of complex compression algorithms. These algorithms are provided as separate
classes, which are used in example MVE-2 modules. The toolkit also contains
modules for usual tasks related to dynamic mesh compression, such as load-
ing dynamic meshes from files, saving dynamic meshes into files and compar-
ing dynamic meshes. Finally the toolkit provides a set of MVE-2 maps which
demonstrate how to use the modules.

The toolkit links to a GPL linear algebra library Math.NET Iridium][iri].

2 Installation

The installation of the toolkit is done by copying the contents of the distribution
(i.e. the Mve2-bin and Mve2-src folders) over a decompressed version of MVE-
2, which can be downloaded from http://herakles.zcu.cz/research/mve2.
The compression toolkit can be used either by using the modules described in
the following sections, or by linking the Compression.dl1l class library to a new
project. The source code of the whole toolkit is provided in the Mve2-src folder.

3 Data structures

3.1 Dynamic mesh

Dynamic meshes are represented by standard MVE-2 structures UniformDataAr-
ray and TriangleMesh. An array of triangle meshes is interpreted as a sequence
of frames with constant temporal distance of 1/25s. Many modules expect
frames to share connectivity, and these modules use the connectivity of the first



frame of the sequence. Note that, in order to achieve better performance, mod-
ules which expect shared connectivity usually do not perform a check whether
the connectivity is indeed equal for all the frames.

4 Provided modules

4.1 AnimationBinaryReader

The module restores a dynamic mesh from a binary file previously created by
the AnimationBinarySaver module.

4.2 AnimationBinarySaver

The module saves an animation into a binary file. The module does not com-
press the data, and the resulting file may be used to either quickly restore an
animation or to compare a compression algorithm against binary storage. The
module saves a single connectivity, i.e. it requires input in the format described
in section 3.1.

4.3 AnimationColorMapping

Maps values of a number point attribute present in each frame of the input
animation to colors. Outputs the input animation with the colors added to the
frames as a point attribute. The resulting mapping is relative to the global
range of the number values over the whole animation. A palette module has
to be connected to the OutValue and InColor ports for this module to work.
Palette modules can be found in Zcu.Mwve. Visualization package.

4.4 AnimationVRMLLoader

Loads an animation from a VRML 2.0 file. Performs parsing of the input and
provides the result in the form of UniformDataArray, which is an array of frames
of the animation. Each frame is represented as a TriangleMesh structure, which
contains points and triangles. The connectivity is shared by all the frames, and
it can be accessed from any of the frames.

4.5 AnimationVRMLSaver

Saves a dynamic mesh into a VRML 2.0 file. The animation should be provided
in the format described in previous section. The connectivity should be equal for
all the frames, however the module does NOT check whether that requirement
is met, it directly uses the connectivity of the first frame of the animation.



4.6 AnimationComparerKG

Compares two animations represented by UniformDataArrays (see section 3.1).
The comparison is done according to the Karni and Gotsman paper [KG04].
Since the paper is unclear about several issues, the module uses methods used
by most later papers in the field. The module computes per-frame averages of
values and Frobenius norms of matrices.

4.7 AnimationComparerSTED

Compares two animations represented by UniformDataArrays (see section 3.1).
The comparison is done according to the Vasa and Skala paper[VS10]. The
module requires the distance of two most distant vertices in the first frame,
which can be computed by the Distance module provided in the standard MVE-
2 library Visualization.

4.8 AnimationDistancePainter

Measures the distance between corresponding points of each frame of an original
version and a distorted version of an animation represented by UniformDataAr-
ray (see section 3.1). Outputs the distorted animation with the distances added
to each frame as a point attribute of the mesh.

4.9 AnimationDistorter

Distorts the input animation by adding random values to vertex coordinates.
The module supports following types of distortion:

1. Gauss generates and adds a random Gaussian distributed value for each
coordinate of each vertex in each frame.

2. GaussTemp generates and adds a random Gaussian distributed value for
each coordinate in each frame (vertices in each frame are shifted by the
same amount).

3. GaussConst generates and adds a random Gaussian distributed value for
each coordinate and each vertex (each vertex is shifted by the same amount
in all the frames of the animation).

4. GaussConstLength works in a way similar to GaussConst, but the devia-
tion of the Gaussian values is inversely proportional to the length of edges
incident with each vertex.

5. SinSpat Adds a sine of each coordinate to each coordinate of each vertex
in each frame.

6. SinTemp Adds a sine of frame index to each coordinate of each vertex in
each frame.



The respective distortion types can be further controlled by module prop-
erty Amount which controls the amplitude of sines or the standard deviation
of Gaussian random values, and by module property Freq which controls the
frequency of sines.

4.10 AnimationSqrDistPainter

Measures the square distance between corresponding points of each frame of an
original version and a distorted version of an animation represented by Unifor-
mDataArray (see section 3.1). Outputs the distorted animation with the square
distances added to each frame as a point attribute of the mesh.

4.11 ArrayLength

Outputs the length of an input UniformDataArray as an Integer number.

4.12 CompressorCoddyac

Compresses a dynamic mesh using PCA in the space of trajectories as suggested
by Vésa and Skala[VS07]. The PCA basis is encoded by the Cobra[VS09] algo-
rithm. The algorithm takes three inputs:

e the quantization constant for the feature vectors (usually set to 0-4),
e the quantization constant for the PCA basis (usually set to 17-21),
e number of used basis vectors (usually set to 30-150).

The algorithm uses the EdgeBreaker (see sec. 5.4) implementation to tra-
verse the mesh. All the data is saved into a single file, which can be decom-
pressed by the DecompressorCoddyac (sec. 4.13) module.

The module provides the resulting data rate (in bits per frame and vertex)
as output, along with ”simulated” decompression output. The simulated output
has geometry equivalent to a real decompression result, however in contrast to
decompression result it has the same vertex indices as the input, and thus it
can be directly compared against the original input dynamic mesh.

4.13 DecompressorCoddyac

Decompressed a dynamic mesh from a file created by the CompressorCoddyac
module (see sec. 4.12). The decompression reconstructs a PCA basis and ver-
tices, using the EdgeBreaker (see sec. 5.4) algorithm to traverse the mesh.
Note that due to the nature of the Edgebreaker connectivity compression, the
decompression result will have different vertex indices, and as such it cannot
be directly compared with the original input of the compression. The decom-
pression result however may be compared to the output of the result of the
DummyCompressor module (see sec. 4.14), which performs reindexing while it
preserves the original vertex coordinates.



4.14 DummyCompressor

Performs a simulated compression and decompression using Edgebreaker, so
that the resulting mesh has the original geometry, but the indices are changed
so that the result can be directly compared to a result of a real decompression.

4.15 MeshComparerMSE

Compares an original version and a distorted version of a static mesh (UnstrGrid
or TriangleMesh). Uses a mean square error measure, which calculates the
average value of squared distances between corresponding points of the original
and distorted mesh.

4.16 MeshComparerVisualKG

Compares an original version and a distorted version of a static mesh (Unstr-
Grid or TriangleMesh). Uses the Visual Error measure described by Karni
and Gotsman in [KGO00]. Calculates the average of the norm of the geometric
distance between the meshes and the norm of the Laplacian difference.

4.17 MeshDistorter

Distorts a static mesh by adding noise to vertices. Supports following types of
distortion:

e Gauss adds a Gaussian distributed random value to each coordinate of
each vertex.

e Sine adds sine of each coordinate to each coordinate of each vertex.

e Uniform adds a uniformly distributed random value to each coordinate of
each vertex.

The standard deviation (res. amplitude) of the distortions can be controlled
by the Amount property of the module.

5 Provided classes

5.1 ArithCoder

The ArithCoder class provides an implementation of context adaptive binary
arithmetic coding similar to CABAC[MWS03]. The class provides two impor-
tant static methods:

e void encode(int[] data, Stream target) encodes the array of inte-
gers into the provided stream,



e int[] decode(Stream source) decodes array of integers from a stream
into which the data has been previously written using the encode method.

The algorithm internally uses exp-Golomb binarisation scheme, and as such
is especially efficient for input data exponentially distributed around zero. The
algorithm is able to process negative values.

5.2 UniformQuantizer

The class provides an easy to use interface for uniform quantization and dequan-
tisation of values. An instance of the class is created by calling a constructor
which accepts one parameter - the quantization constant, which determines the
size of quantization bins. The instance provides two important methods:

e int Encode(double v) quantizes the input value using the given quan-
tization constant,

e double Restore(int v) restores the original value represented by en-
coded value v.

5.3 PCA

The PCA class encapsulates an instance of Principal Component Analysis.
The class provides methods for finding an uncorrelated basis for a set of d-
dimensional samples, finding a representation of a vector in the new (potentially
reduced) basis, restoring a sample value in the original space and encoding the
basis using the Cobra algorithm[VS09]. The class provides following important
methods and fields:

e double[][] Data is the input set of samples, each sample expressed as
an array of double values.

e ComputeBasis() performs the analysis of the data, and initializes the
internal data structures computing the new uncorrelated basis and the
means vector.

e double[] GetCoefs(double[] vector, int count) computes the rep-
resentation of the provided vector in the new uncorrelated basis. Specified
number of coefficients is computed and returned.

e double[] Restore(double[] vector) reconstructs the original coordi-
nates of a sample.

e double EncodeBasisCobra(Stream target, int count, double delta)
encodes the given number of basis vectors into the provided data stream
using the provided quatization constant. The method uses the Cobra
algorithm to encode the basis.



5.4 EdgebreakerCompressor

Traverses topology of the mesh using the Edgebreaker algorithm[Ros99] and pro-
vides compressed information about topology. It also raises events FirstTriangle
and NewVertex associated with geometry compression. The class provides fol-
lowing methods and structures:

e Stream OutputStream stream for stored topology description

e int getNumOfComponents() returns number of components of the com-
pressed mesh

e string getCLERS() returns CLERS topology description of the com-
pressed mesh

e UniformDataArray getHandles() returns list of handles of the compressed
mesh

e UniformDataArray getHoles() returns list of holes of the compressed
mesh

e UniformDataArray getHoleStarts() returns list of components of the
mesh starting by holes

e int[] getVisitedTriangles() returns list of triangles of the compressed
mesh in order they were visited

e int[] get0(Q) returns Edgebreaker O-table
e int[] getV() returns Edgebreaker V-table

e Run(UniformDataArray inputTris, int points) starts topology com-
pression and raises geometry compression events

e EventHandler firstTriangleEventHandler event handler for the first
triangle of each component

e EventHandler newVectorEventHandler event handler for the new visited
vertex

For details on usage of the class see the source code of the CompressorCoddyac

class.

5.5 EdgebreakerDecompressor

Algorithm reconstructs topology of a mesh from data provided by Edgebreaker[Ros99]
compressor. It also raises events FirstTrianlge and NewVertex associated with
geometry decompression. The class provides following methods and structures:

e Stream InputStream stream with stored topology description



e UniformDataArray Run() starts topology decompression and raises ge-
ometry compression events, needs InputStream to be set first

e UniformDataArray Run(char[] clers, int numOfComponents, int[]
holes, int[] holeStarts, int[] handles) starts topology decompres-
sion and raises geometry compression events

e int[] getInvisibleTriangles() returns list of invisible triangles of the
mesh (eg. trinagles filling holes)

e int[] getV() returns Edgebreaker V-table

For details on usage of the class see the source code of the DecompressorCoddyac

class.

6 Provided example maps

6.1 AnimationPlayer

The map loads a VRML file containing an animation. This animation is iter-
ated in a loop and for each frame vertex normals are computed. Finally, the
animation is played back using the SimpleXNARenderer module.

6.2 CompressCoddyac

Compresses a loaded animation using the Coddyac[VS07] algorithm. The data
is written into the data.dat file.

6.3 CompressCoddyacSTEDCompare

Compresses a loaded animation using the Coddyac[VS07] algorithm. The data
is written into the data.dat file. The compression result is compared with
the original using the STED algorithm. The map demonstrates how to set the
inputs for the AnimationComparerSTED module.

6.4 DecompressKGCompare

Decompresses the file data.dat file and compares the result with the original
using the KG error metric. The map demonstrated how to use the Dummy-
Compressor module to reindex vertices of the animation.

6.5 DistortCompareKG

Demonstrates possibilities of artificial distortion module. The distortion result
is compared with the original using the KG error metric.



6.6 ErrorPainter

Shows the distribution of introduced error using the AnimatonDistancePainter
module. The loaded animation is compressed using the Coddyac algorithm and
per-vertex compared against the original. Finally, vertices with large distortion
are painted red, and vertices with small distortion are painted green.



References

[FVS06]

[iri]

[KGOO]

[KG04]

[MWS03]

[Ros99]

[VS07]

[VS09]

[VS10]

Milan Frank, Libor Vasa, and Vaclav Skala. Mve-2 applied in educa-
tion process. In .NET Technologies 2006, pages 39-45, Plzen, 2006.
University of West Bohemia.

http://www.mathdotnet.com/iridium.aspx.

Zachi Karni and Craig Gotsman. Spectral compression of mesh geom-
etry. In SIGGRAPH ’00: Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, pages 279-286, New
York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

Zachi Karni and Craig Gotsman. Compression of soft-body animation
sequences. In "Computers € Graphics 28, 1”7, pages 25-34, 2004.

Detlev Marpe, Thomas Wiegand, and Heiko Schwarz. Context-based
adaptive binary arithmetic coding in the h.264/avc video compression
standard. IEEE Trans. Circuits Syst. Video Techn., 13(7):620-636,
2003.

Jarek Rossignac. Edgebreaker: Connectivity compression for triangle
meshes. IEEFE Transactions on Visualization and Computer Graphics,
5(1):47-61, 1999.

Libor Vasa and Viaclav Skala. Coddyac: Connectivity driven dy-
namic mesh compression. In 8DTV-CON, The True Vision - Cap-
ture, Transmission and Display of 3D Video, Kos, Greece, May 2007.
IEEE Computer Society.

Libor Vasa and Vaclav Skala. Cobra: Compression of the basis for the
pca represented animations. Computer Graphics Forum, 28(6):1529—
1540, 2009.

Libor Vasa and Véaclav Skala. A perception correlated comparison
method for dynamic meshes. To appear in IEEE Transactions on
Visualization and Computer Graphics, 2010.

10



