
A spatio-temporal metric for dynamic mesh
comparison

Libor Vasa, Vaclav Skala

University of West Bohemia, Department of Computer Science and Engineering
Univerzitni 22, Pilsen, Czech Republic
{lvasa, skala}@kiv.zcu.cz

Abstract. A new approach to comparison of dynamic meshes based on
Hausdorff distance is presented along with examples of application of such
metric. The technique presented is based on representation of a 3D dynamic
mesh by a 4D static tetrahedral mesh. Issues concerning space-time relations,
mesh consistency and distance computation are addressed, yielding a fully
applicable algorithm. Necessary speedup techniques are also discussed in detail
and many possible applications of the proposed metric are outlined.

1 Introduction

Dynamic mesh extraction from multicamera recordings of real scenes has become
a common task of computer graphics of these days. Algorithms running in real time
are being developed and used in common practice, producing high quality dynamic
meshes that can be used for all kinds of purposes, from 3D television to elaborate
experimental techniques requiring exact measurement.

However, today’s hardware is still far from being powerful enough to handle the
produced data in the raw form. Limited bandwidth is usually the main bottleneck, but
also processing power and memory requirements may become difficult to meet.

Various techniques of data rate reduction of dynamic meshes are already
appearing, usually involving some kind of lossy value compression scheme combined
with some elaborate prediction technique [3,7,5]. One can also expect that there will
appear techniques of geometry decimation of the dynamic mesh, similar to algorithms
used for static mesh simplification [8].

The purpose of this contribution is to provide an objective methodology of
comparing dynamic meshes. Such technique will be needed in order to compare and
evaluate the compression methods and we will show that it may be used for other
purposes as well.

2 Problem definition

The problem we will solve is defined as follows: Let there be given a set
{ }N

kkMS 1== of dynamic meshes. A dynamic mesh M is a sequence of triangle
meshes of constant connectivity, which may be produced by some extraction
technique [11,12]. We want to define a function d(M1, M2) that will be a metric in the
space of dynamic meshes. Namely, we expect the following properties:

d(M1, M2) = 0 M1=M2
d(M1, M2) = d(M2, M1)
d(M1, M2) < d(M1, M3) A human observer sees M2 as “more similar” to
 M1 than to M3

(1)

Of these conditions is of course the last one the hardest to achieve.
In the past, research was done in the field of comparing static triangle

meshes [2,10], the basic idea is quite simple and is based on the definition of
Hausdorff distance of two objects. The Hausdorff distance is defined as follows:

Let’s have two static triangle meshes, m1 and m2. Distance of a point to a mesh is
defined as a minimum of Euclidean distances of the given point p and all points pm of
the mesh m:

()mmpmp ppd
m

−=
∈∀

min, (2)

From this one can define a one-way (non-symmetric) distance of a mesh m1 to

a mesh m2:

()
2

1
21 ,, max' mpmpmm m

m

dd
∈∀

= (3)

A symmetric Hausdorff distance is then defined as

()
12122121 ,,,, ','max mmmmmmmm dddd == (4)

In the implementations of the Hausdorff distance evaluators both meshes are

usually sampled in order to gain distance of a point to a mesh (usually some elaborate
point to triangle distance test is used) and various acceleration techniques (space

subdivisions etc.) are exploited in order to reduce the computational complexity that
is quadratic in the raw form of the definition.

Our approach is to adopt the Hausdorff distance and use it for comparison of
dynamic meshes that will be represented by static objects on 4D. In order to do so, we
will have to address several problems that arise with the higher dimension of the
problem.

3 Human perception of time considerations

The Hausdorff distance measurement is based on the concept of the Euclidean
distance. In 3D space there is no problem with units as long as the same units are
used for all axes. However, in 4D we cannot use equal units, as one of the dimensions
is time. Therefore we must answer the question which units should be used.

The key to the answer is the definition of the desired metric. It implies, that equal
distance on each axis should cause equal disturbance in the mesh. It is important to
realize that human perception of time is quite absolute and it is actually the spatial
metric that causes problems. In computer graphics modeling it is quite usual to work
with vaguely defined spatial units, while time is measured absolutely. Therefore, the
question actually is “what spatial distance is equal to the given time span in the terms
of human perception”.

The problem is that distance of one unit may cause distance of half a screen in one
model, as well as being barely distinguishable in some other model. One solution
would be to consider the distance of point projections on human retina, but this
distance also depends on the size of used screen.

Therefore we use a “relative distance”, defined as distance in the model units
divided by the size of the model’s body diagonal. The task now is to find the
coefficient alpha that will relate the relative distance to time units. In order to do so,
we will have to perform subjective testing, but for the time of being we can do
following considerations:

1. time span of 1/100s is almost unrecognizable for a human observer, while spatial

shifts of 10% is on the limit of acceptability, therefore we expect alpha to be larger
than 0.01/0.1 = 0.1

2. time spans of units of seconds are on the limit of acceptability, while spatial shift
of 0.1% is almost unrecognizable, therefore we expect alpha to be smaller than
1/0.001 = 1000

Saying that, we can guess the value of the alpha coefficient to be about 10, i.e.

time span of 100ms is equal to spatial shift of 1%.

4 Dynamic mesh as a static 4D object

We have mentioned that in order to use the Hausdorff distance concept we have to
represent the dynamic mesh as a static object in 4D. As static mesh in 3D consists of
triangles, which are elements one-dimension lower than the dimension of the 3D
space, in 4D we will represent the dynamic mesh by a static tetrahedral mesh. Note
that tetrahedron is not a simplex in 4D.

We can extract one frame from such mesh by cutting it by a plane t=const, because
a tetrahedron cut by a plane gives one or two triangles. The procedure that converts
a dynamic triangle mesh into a 4D tetrahedral mesh is based on the idea, that a
triangle in two consequent frames forms a prism in 4D (see figure 1). The process of
conversion is therefore simply a process of breaking such prisms into tetrahedra. Each
prism can be divided into three tetrahedra.

However, we must be very careful about the breaking. One can see that the sides
of the prisms are not planar, and therefore we must explicitly make sure that the mesh
we are creating will be continuous. Namely, we must make sure that a side diagonal
in neighboring prisms is always equal. In order to do so, we propose the following
subdivision procedure:
1. find a vertex on the base of the prism with lowest index. Create a tetrahedron that

is formed by the whole top of the prism and this vertex.
2. find a vertex on the base of the prism with the largest index. Create a tetrahedron

that is formed by the whole base of the prism and the vertex above the vertex with
largest index.

3. create a tetrahedron formed by remaining two vertices on the base and two vertices
on the top of the prism.

Because the relations of largest/lowest index are kept on each face, one can see that
the created tetrahedral mesh is consistent.

a) b) c)

Fig. 1. Moving triangle as a 4D prism (green is the triangle in time t, blue is the triangle in time
t+1), two possible diagonals on a common side, two tetrahedra used for consistent subdivision

5 Point to tetrahedron distance test

Our distance algorithm is based on the point to tetrahedron distance test. A distance to
a tetrahedron may be in fact distance to one of following entities:
1. distance to the body of the tetrahedron. Is only possible when the orthogonal

projection of the point lies within the tetrahedron
2. distance to a face of the tetrahedron. Is only possible when the orthogonal

projection of the point to the plane of the face lies on the face
3. distance to an edge of the tetrahedron. Is only possible when the orthogonal

projection of the point to the line of the face lies on the edge
4. distance to a vertex of the tetrahedron
Of these distances we must choose the lowest that meets its projection conditions.

5.1 Distance to the body of a tetrahedron

A tetrahedron is defined by three 4D vectors of Euclidean coordinates, defined as
follows:

v0 = T1-T0
v1 = T2-T0
v2 = T3-T0

(5)

Therefore a tetrahedron in 4D has a normal vector n:

n = v0 x v1 x v2 (6)

Note that we are using cross product that is a ternary operator in 4D.
Any point P can now be expressed as follows:

ndvcvbvaTP
ρρρρ

+++=− 3210 (7)

We can find the combination coefficients by solving a 4x4 set of linear equations,

for example using Sarus rule. The projection to the tetrahedron space lies within the
tetrahedron if following conditions hold:

() 1,0,0,0 ≤++≥≥≥ cbacba (8)

In such case the distance can be expressed as d*|n|.

5.3 Distance to a face of a tetrahedron

The key feature one must consider is that a face in 4D (and a plane in general) has not
a uniquely defined normal. Therefore, we must find a normal that is orthogonal to the
face, and that passes through the evaluated point P. In order to do so, we can use the
following procedure:

Let’s have T0, T1 and T2 vertices that define a face of the tetrahedron, and
a point P.

v0 = T1-T0
v1 = T2-T0
p = P-T0

(9)

we can now find a vector b that is orthogonal to all three vectors by using cross

product

B = v0 x v1 x p (10)

A normal vector n that can be used for the projection can be found as

N = v0 x v1 x b (11)

Now we can use a similar procedure to find where the projection lies. We can

write

p = a*v0 + b*v1 + c*b + d*n (12)

where we expect the c coefficient to be zero. If now 0,0 ≥≥ ba and () 1≤+ ba

then the projection lies on the face, and the distance is d*|n|.

5.3 Distance to an edge of a tetrahedron

For the distance of an edge one can use the properties of dot product that hold in
4D space. Let’s define

v1 = E1-E0
v2 = P-E0

(13)

It is well known that the line of the edge can be written as E0+t*v1.
In order to determine the distance, we would like to find the t parameter of

an orthogonal projection of P to the line. One can derive that t can be determined as
follows:

t = (v1.v2)/(v1.v1) (14)

From the known value of t we can easily determine whether the projection lies on
the edge (0<=t<=1) and eventually express the distance as

2.2
2

1.1 vvtvvd −=
(15)

6 Acceleration techniques

The distance tests shown above work for all kinds of tetrahedra (i.e. including obtuse
tetrahedra), but may be very slow when each tested point is to be evaluated against
each tetrahedron of the other mesh.

Our first acceleration technique is based on the following observation: A point can
be projected to a face only if it is projected on at least two of the edges that define the
face (for obtuse faces). Based on this idea we evaluate all edges before the faces.
During the evaluation we increase a counter for each face if a point is projected to
an edge that incides with the face (two counters representing two incident faces are
increased whenever a point is found to be projected on an edge). A face is then only
evaluated if its counter is larger or equal to two.

From the previous equations one can see, that evaluating an edge consists only of
two dot products, one division and two comparisons, while evaluating the face
includes solving a 4x4 set of linear equations (12). Moreover, the case when a point is
projected to a face of a tetrahedron is a rare one. Therefore this simple technique
provides a significant speedup of more than 50%. A further speedup can be achieved
by postponing the square root operation that is part of each distance evaluation,
to the latest possible moment, while keeping the square distances.

We are also utilizing spatial subdivision techniques in order to reduce
the computational complexity. In a preprocessing stage we create a 4D grid of cells,
where each cell holds a list of tetrahedra that intersect with the cell.

The usual approach determining which cells are intersected by some entity is to
find a bounding box of the entity and mark all cells of the bounding box. Because the
grid we are using is 4D, this would lead to unnecessary marking of many empty cells.
Therefore, we have developed an improved technique based on the following
observation: Each tetrahedron has its uniquely defined 3D space with a normal. This
space is a hyperplane in 4D that divides the time-space into parts “above” and
“below”. We can evaluate each corner of a cell according to whether it is above or
below the tetrahedron (each cell has 16 corners, it can be imagined as a hypercube).
Only cells that are neither completely below nor completely above the tetrahedron
can be intersected by the tetrahedron. In our experiments, including all the cells of
a bounding box of a tetrahedron, have lead to an average of approximately 35 cells
per tetrahedron (for given tetrahedral mesh and grid density), while keeping only the

cells that satisfy our condition has reduced this number to cca. 8 cells per tetrahedron
and led to a speedup of about 30% (including the preprocessing stage).

In the evaluation stage, a cell that contains the evaluated point is found and
searched for possible closest tetrahedron. Further cells are subsequently evaluated
only if they can provide a tetrahedron that is closer than the already found one,
i.e. only if the closest point of the cell is closer than the current distance. This
technique vastly improves the performance, depending on the density of the grid.

We have also included precomputation of reused values and some further
improvements (usage tables that show which faces and edges were already evaluated
for a given point etc.). Our implementation is capable of evaluating about 180 V-M
distances per second, where the mesh consists of about 120 000 tetrahedra. This
allows us to compute distances of moderately complex animations within minutes,
larger animations still must be evaluated offline (hours of processing time are
needed).

7 Applications

We have already shown the main application of the proposed metric, it is comparison
of dynamic meshes decimated by various methods, but it is not the only field where
comparison of animations can be used.

Another natural area where this technique can be used is artificial intelligence,
where the metric can be used to recognize various actions and to respond to them. In
our experiments we have compared two recordings of a human jump [11,12], and we
have found that the distance of one jump sequence to the other is significantly smaller
than the distance of a jump to the sequence that represents the human walking. Each
frame of the human jump sequence consists of about 30 000 triangles, and we have
compared 50 frame subsets of the sequence.

Animation comparisons

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,00E+00 2,00E-02 4,00E-02 6,00E-02 8,00E-02 1,00E-01 1,20E-01 1,40E-01 1,60E-01 1,80E-01 2,00E-01

distance

re
la

tiv
e

oc
cu

rr
ec

e

jump/jump jump/walk
Fig. 2. Distance distribution experiments

The figure 2 shows the histogram of the measured distances for the above
mentioned experiments. In order to compare longer time spans we have compared
tetrahedral meshes that consist of only every other mesh of the animation, effectively
reducing the frame-rate of the animation to one half of its original value.

Distance distribution for half/full framerate

0

5000

10000

15000

20000

25000

0.00E+00 2.00E-02 4.00E-02 6.00E-02 8.00E-02 1.00E-01 1.20E-01 1.40E-01 1.60E-01

distance

oc
cu

rr
en

ce

full framerate half framerate
Fig. 3. Full/half frame-rate experiments

Our other experiment shows that such frame-rate reduction is possible, because it
does not disturb the characteristics of the distribution of the error. Figure 3 shows the
relative histogram of distance values for full frame-rate comparison and half frame-
rate comparison of equal time span of an animation. The average difference is less
than 4%, and the half-frame-rate curve keeps all the characteristics of the full frame
rate. However, this is only possible when animation recognition is considered. The
difference of 4% may be unacceptable when exact comparison for decimation
evaluation is considered.

Another application is obvious from the previous one – the animation metric can
be used to align animations in both time and space at the same time. This would
require some slight changes in the software in order to look for average distance
vector rather than maximum distance size but this can be done very easily.

One can also easily imagine applications like self-training, where the user would
try to fit with her movements to some predefined pattern. Our method can then use
rendering of the distance of the movements represented by surface colors that would
tell the trainee where and when exactly she was following the pattern well or not.
This technique can be used in wide range of areas from dance up to surgery training.

8 Future work

The proposed algorithm is still computationally expensive; therefore we will put
effort into acceleration techniques that would make its use easier and more
comfortable.

We would also like to further develop the idea of representing a dynamic mesh by
a static mesh in 4D and propose a decimation method based on this representation
and some tetrahedral mesh decimation algorithm provided with appropriate criteria.

Acknowledgements

The authors would like to thank Mark Dobbs for proof reading. This project was
supported by the 6FP NoE project 3DTV – Integrated Three-Dimensional Television
– Capture, Transmission and Display No. 511568 and MŠMT ČR project
1P04LA240.

References

1. Chopra, P., Meyer, J.: Tetfusion: An algorithm for rapid tetrahedral mesh simplification. In
Proc. IEEE Visualization, pages 133--140, 2002.

2. Cignoni, P., Rochini, C., Scopigno, R.: Metro: measuring error on simplified surfaces.
Technical Report B4-01-01-96, Istituto I.E.I. - C.N.R., Pisa, Italy, January 1996.

3. Coors, V., Rossignac, J.: Delphi: Geometry-based Connectivity Prediction in Triange Mesh
Compression. The Visual Computer 20(8-9): 507-520 May 2004.

4. Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes, IEEE
Transactions on Visualization and Computer Graphics, Vol. 5, No. 1, January - March 1999.

5. Müller, K., Smolic, A., Kautzner, M., Eisert, P., Wiegand, T.: Predictive Compression of
Dynamic 3D Meshes. Proc. International Conference on Image Processing (ICIP 2005),
Genova, Italy, pp., September 2005.

6. Bayazit, U., Orcay, O., Gurgen, F.: Predictive Vector Quantization of 3D polygonal mesh
geometry by representation of vertices in local coordinate system. Proc. of EUSIPCO 2005.

7. Ibarria, L., Rossignac, J.: Dynapack: Space-Time compression of the 3D animations of
triangle meshes with fixed connectivity. Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation, 2003.

8. Franc, M.: Methods for Polygonal Mesh Simplification. Internal technical report at
University of West Bohemia, 2003.

9. Gumhold, S., Guthe, S., Straer, W.: Tetrahedral Mesh Compression with the CutBorder
Machine. In Proceedings of the 10th Annual IEEE Visualization Conference, 1999.

10. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: Measuring errors between surfaces using
the hausdorff distance. In Proceedings of the IEEE International Conference on Multimedia
and Expo, volume I, pages 705--708, 2002.

11. Anuar, N., Guskov, I.: Extracting Animated Meshes with Adaptive Motion Estimation.
Proc. of the 9th International Fall Worksop on Vision, Modeling, and Visualization, 2004.

12. Sand, P., McMillan, L., Popovic, J.: Continuous Capture of Skin Deformation. ACM
Transactions on Graphics. 22(3), pp. 578-586, 2003.

