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Abstract
This paper addresses the problem of representing dynamic 3D meshes in a compact way, so that they can be
stored and transmitted efficiently. We focus on sequences of triangle meshes with shared connectivity, avoiding
the necessity of having a skinning structure. Our method first computes an average mesh of the whole sequence in
edge shape space. A discrete geometric Laplacian of this average surface is then used to encode the coefficients
that describe the trajectories of the mesh vertices. Optionally, a novel spatio-temporal predictor may be applied
to the trajectories to further improve the compression rate. We demonstrate that our approach outperforms the
current state of the art in terms of low data rate at a given perceived distortion, as measured by the STED and KG
error metrics.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Animation—Image Pro-
cessing and Computer Vision [I.4.2]: Compression (Coding)—Approximate methods

1. Introduction

The task of mesh compression is to find a compact binary
representation of 3D models, easy to store and to transmit
due to its small size, which allows reconstructing the mesh
at the decoder side. In many applications the reconstruction
does not necessarily have to be exactly equal to the input
data, that is, some loss of precision is acceptable.

While some applications require the maximum disloca-
tion of the vertices to be less than some given threshold, in
many other applications it is the perceived amount of dis-
tortion that should be limited. Recent research has proven
that these criteria are fundamentally different, and while ver-
tex dislocations are traditionally used as a measure of mesh
distortion, it is probably different features, such as dihedral
angles, local curvature values, or edge lengths, that are im-
portant for distortion perception. Preserving these quantities,
however, requires approaches different from those of tradi-
tional mesh compression [CLL∗13].

One of the first attempts at perception-oriented mesh com-
pression is high-pass encoding [SCOT03], which builds on
the idea of transmitting the so-called differential coordi-
nates, obtained by applying a combinatorial Laplacian to
the coordinate function and reconstructing the coordinates
by inverting the (extended) Laplacian. This approach suc-
ceeds at capturing local relations of vertices and usually out-

performs other approaches, such as parallelogram predic-
tion [TG98], when the mesh distortion is evaluated using
some perception-based error measure.

At the same time, high-pass encoding can be interpreted
as a particular prediction technique, where each vertex is be-
ing predicted at the centre of mass of its neighbouring ver-
tices. The accuracy of the prediction is directly linked to
the entropy of the residuals, that is, the differential coordi-
nates. The accuracy of Laplacian-based prediction is usually
slightly better than the accuracy of the parallelogram predic-
tor. The residual entropy can be attributed to two sources in
this case: the normal component of the Laplacian, which can
be interpreted as the discrete mean curvature at each vertex,
and the tangential component of the Laplacian, which can be
interpreted as a sampling offset to each vertex.

Our observation is that the second component can be
partially removed and hence the residual entropy be re-
duced, if a geometric Laplacian is used instead of the purely
combinatorial operator. Popular choices of such geometric
Laplacians include the cotangent Laplacian and the mean
value (MV) Laplacian, which stems from the concept of
mean value coordinates [Flo03]. Unfortunately, reconstruct-
ing such geometric Laplacians requires the availability of the
geometry of the mesh, or at least its edge lengths, at the de-
coder, and it turns out that transmitting this information is as
expensive as transmitting the mesh itself.
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While compression based on geometric Laplacians is
therefore not suitable for single meshes, it turns out to be
beneficial for compressing dynamic meshes. Our main idea
is to first build an average mesh of all the frames in the se-
quence, and we found that this is best done using the edge
shape space [WDAH10]. We then compute the geometric
Laplacian of this average mesh and encode the given mesh
sequence in a PCA-reduced basis. The rationale behind this
approach is that the average mesh contains the sampling in-
formation shared by all the other frames. For the data sets
that we consider, we achieve a data rate reduction of 10–
40%, compared to [VP11], keeping the same amount of dis-
tortion as measured by the STED error metric [VS11].

Main contributions

The main contributions of our work include:

• investigating and reducing the geometric redundancy in
dynamic meshes by using discrete Laplace operators;

• designing a novel prediction technique that exploits spa-
tial and temporal coherence of differential coordinates.

While the algorithm is based on similar ideas as [VS07]
and [VP11], a significant gain in the compression perfor-
mance is due to both the proposed application of the geo-
metric Laplacian and the mesh averaging technique. The ge-
ometric Laplacian substantially reduces the redundancy in
differential coordinates over the sequence. However, in or-
der to build the geometric Laplacian, our technique requires
to explicitly encode the average mesh, while [VP11] does
not require to store any additional data, since it employs a
purely combinatorial Laplacian that can be recovered from
connectivity only. A further improvement in the compres-
sion performance is achieved by means of the proposed dif-
ferential coordinates predictor. The predictor, while similar
to other general techniques, is also novel in terms of formu-
lation and application to the framework, and can potentially
be applied to similar approaches, such as [VP11], to improve
their performance.

The rest of the paper is organized as follows. After a brief
overview of the most relevant work in the field of dynamic
mesh compression (Section 2), the overview of the proposed
approach is sketched in Section 3. Each step of the algorithm
is then described in more detail. Section 4 describes how
principal component analysis is used to reduce the dimen-
sionality of the problem, Section 5 focusses on the computa-
tion of the average mesh, and Section 6 explains the usage of
geometric Laplacians for the encoding. Section 7 describes
the novel predictor for delta trajectories and the results of
our experiments are presented in Section 8. We conclude by
discussing the limitations of our approach in Section 9.

2. Related work

The aim of compressing an animated mesh sequence is to
reduce the amount of space needed to store or to transmit

all frames of the sequence. In principle, it is possible to
simply apply one of the common techniques for the com-
pression of static geometry (see [PKJK05] for a survey) and
compress each frame separately. However, most of the static
techniques exploit only spatial coherence of the shape, while
also the temporal coherence between frames should be ex-
ploited in case of an animated sequence.

The most common way to reduce the data rate is to en-
code only a subset of the data and use them to predict the
missing information, storing only the correction of the pre-
diction. In case of mesh sequences, a first reference frame
is usually compressed using a static compression technique,
while the following frames are reconstructed by predicting
the position of each vertex from both the spatial positions of
the already decoded neighbouring vertices and the position
of the same vertex in previous frames, achieving a full res-
olution reconstructed sequence with possible loss of preci-
sion due to the quantization of the correction vectors. This
principle has been exploited, for example, in the MPEG-
4 Animation Framework eXtension [BSJ04, JKJ∗04]. Most
techniques take advantage of the assumption of local rigid-
ity of motion, that is, the assumption that vertices, which are
close to each other, are characterized by the same motion.
Rossignac et al. [RSS01] compute the motion of a vertex as
the average motion of its neighbours, while Stefanoski and
Ostermann [SO06] compress consecutive frames assuming
that most of the dihedral angles do not significantly change.
Other techniques [MSK∗05, MSKW06, ZO04, ZO05] com-
bine the same assumption with shape partitioning.

Instead of focussing on spatial and temporal coherence, a
number of techniques achieve a significant reduction in data
rate by exploring the data and finding the most important
component via principal component analysis (PCA) of the
data. The original approach by Alexa and Müller [AM00]
uses PCA to find a set of key-frames to form a basis of
the sequence. Each frame is encoded as a linear combina-
tion of these basis vectors, which may not correspond to any
real frame. The approach was later extended by Karni and
Gotsman [KG04] by introducing a linear predictor to esti-
mate the weights of the linear combination and by Lee et
al. [LKT∗07], who describe how to determine the optimal
number of key-frames. These approaches aim to find and
encode a collection of R3n vectors (n being the number of
vertices) plus a number of coefficients for each frame of the
sequence. The disadvantage is that the number of basis vec-
tors may be quite high, and in case of meshes with a large
number of vertices the approach is computationally ineffi-
cient and may even fail to capture the optimal basis of the
sequence.

Several variations of the approach have been proposed.
In [SLKO07] a multi-resolution PCA-based approach is pre-
sented. In [SSK05] and then in [AS07] the vertices are
clustered according to their motion and then PCA is per-
formed on each cluster, while in [LCS13] the frames are
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Figure 1: Flowchart of the proposed compression algorithm (encoder). The predictor is shown in detail in Figure 5.

temporally clustered and PCA is performed on each sub-
sequence. However, the best reduction is achieved by the
CODDYAC algorithm [VS07]. In this approach, instead of
performing PCA on the geometry to find the key-frames,
PCA is applied to the trajectories of the vertices in order
to find a minimal number of significant trajectories charac-
terizing the motion of the shape over the sequence. Each
vertex trajectory is expressed as a combination of the ba-
sis trajectories and the algorithm encodes only the basis tra-
jectory vectors and the coefficients. The same approach has
been revised and improved in [VS09], proposing an alter-
native approach to compress the basis vectors named CO-
BRA, and in [VP11], where the CODDYAC algorithm is
combined with the Laplacian encoding technique by Sorkine
et al. [SCOT03] to achieve the best compression rate so far
with respect to a perceptual metric. Our proposed algorithm
builds upon the CODDYAC approach and exploits the bene-
fits of including geometric information in the Laplacian en-
coding.

3. Proposed algorithm overview

This section briefly sketches the algorithm, which is also
summarized visually in Figures 1 and 2. In the following,
symbols with a hat denote predictions of corresponding val-
ues, while symbols with a bar denote the corresponding val-
ues as reconstructed by the decoder, that is, different from
the original values due to quantization and other sources of
loss of precision.

We assume that our input is a sequence of f triangle
meshes (frames)M1, . . . ,M f characterized by the same un-
derlying connectivity. We assume that the connectivity is en-
coded once, using any state-of-the-art algorithm. The posi-

tion of the i-th vertex in the j-th frame is given by a vector
of coordinates vi, j = (vx

i, j,v
y
i, j,v

z
i, j), i = 1, . . . ,n, j = 1, . . . , f .

The proposed compression algorithm consists of several
steps which are described in detail in the following sections.
First, the dimensionality of the input data is reduced using
the trajectory space PCA approach of the CODDYAC algo-
rithm. After this step, the trajectory of each vertex is de-
scribed by a vector of length m (user specified parameter).
These vectors are then interpreted as m independent scalar-
valued functions defined on the vertices of the mesh.

An average meshM is computed for the input sequence
in the so-called edge shape space [WDAH10] to avoid the
usual pitfalls of mesh interpolation and averaging. This av-
erage mesh is encoded once using some standard approach
for static mesh compression. It allows building a geometric
discrete Laplace operator in the form of a matrix L̄ ∈ Rn×n

at both the encoder and the decoder.

The separate functions describing vertex trajectories are
transformed by applying a discrete geometric Laplacian op-
erator, yielding the so-called delta trajectories, which have
a significantly smaller entropy than the original trajectory
vectors. The decoder subsequently reverts this transforma-
tion by inverting the Laplacian matrix and reconstructs the
trajectory vectors from the delta trajectories.

As an optional step, it is possible to compute the delta co-
ordinates of the average mesh as well and use them to predict
the delta trajectories.

4. Principal component analysis

The first step of the algorithm reduces the dimensionality
of the data by using PCA. We follow the trajectory-based
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Figure 2: Flowchart of the proposed compression algorithm (decoder). The predictor is shown in detail in Figure 5.

approach of the CODDYAC algorithm [VS07]. First, the
trajectory of each vertex is expressed as a column vector
ti = (vx

i,1,v
y
i,1,v

z
i,1,v

x
i,2,v

y
i,2,v

z
i,2, ...,v

x
i, f ,v

y
i, f ,v

z
i, f )

T ∈ R3 f . An
optimized basis of the space of trajectories is then found us-
ing the eigenvalue decomposition of the autocorrelation ma-
trix of the trajectory vectors. This basis is given by the or-
thonormal eigentrajectories ei ∈ R3 f , i = 1, . . . ,3 f and uses
the average trajectory t = (t1 + · · ·+ tn)/n ∈ R3 f as the ori-
gin. Collecting the m most important eigentrajectories in the
matrix B = (e1,e2, . . . ,em)

T ∈ Rm×3 f , the trajectory of the
i-th vertex is then described by the shorter column vector
si = B(ti− t) ∈ Rm. Usually, the number of used basis vec-
tors m is much smaller than the number of frames, allowing
for a substantial reduction of the data rate.

To encode the data, it is necessary to encode the matrix
B, the average trajectory t, and the vectors si. We use the
COBRA algorithm [VS09] to encode B, while the rest of
the paper deals with the encoding of the vectors si. During
decoding, each trajectory ti is reconstructed with some loss
of precision as t̄i = B̄T s̄i + t̄.

5. Computing the average mesh

An average mesh, which captures the common inter-vertex
relationships, is used in our algorithm. The easiest way to
compute it is to align all the frames, for example using an
iterative closest point based approach, and then to compute
the average position of each vertex. This approach, although
computationally inexpensive, may lead to unsatisfactory re-
sults (see Figure 3). The average shape may exhibit artefacts,
such as shrinking effects and self-intersections, leading to an
invalid and visually implausible configuration of the mesh.

To overcome these limitations, we compute the average

(a) (b) (c)

Figure 3: The choice of the shape space severely affects the
computation of the average mesh. In the March 2 data set
(a), the mesh describes a circular trajectory. A simple aver-
age on vertex coordinates results in a mesh where the shrink-
ing effect is clearly visible (b). Computing the average shape
in edge space (c) avoids this effect and leads to a physically
and visually plausible average mesh which captures the real
structure of the deforming shape.

mesh in the edge shape space [WDAH10], where each frame
is expressed in terms of edge coordinates, that is, by edge
lengths and dihedral angles between adjacent faces. For
each edge, we compute its average length and its average
dihedral angle over the whole sequence. However, it is not
guaranteed that these values form a valid mesh configura-
tion. Therefore, we project the average mesh back to the
original vertex shape space by solving a non-linear optimiza-
tion problem that searches for the mesh whose edge coordi-
nates are as close as possible to the prescribed values. The
problem can be tackled in a hierarchical fashion [WDAH10]
or by iteratively solving a global non-linear system [FB11].
The resulting shape is finally placed in the original R3 space
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by tracking the trajectory of a reference face and computing
its average position over time. In our experiments, we em-
ploy the technique presented in [WDAH10] to compute the
average mesh.

The average mesh M is then compressed using any of
the common techniques for static mesh encoding. In our im-
plementation we use the high-pass encoding by Sorkine et
al. [SCOT03].

6. Discrete geometric Laplace operator

In high-pass encoding of meshes [SCOT03] and in
Laplacian-based encoding of dynamic meshes [VP11], a dis-
crete combinatorial Laplace operator is applied to data as-
sociated with the vertices of a triangle mesh. Two variants
of the operator are used respectively: the Kirchhoff Lapla-
cian and the Tutte Laplacian. As argued in [VP11], the Tutte
Laplacian is better suited for mesh compression, since it cor-
responds to uniform quantization of vertex-associated data
(see [WMKG07, Zha04] for more details on discrete Lapla-
cians).

Using the Tutte Laplacian, the Laplace transformation is
equivalent to encoding the difference between the actual po-
sition of a vertex and the average of its one-ring neighbours.
These difference vectors are usually referred to as differ-
ential coordinates. The original coordinates can be recon-
structed from them if at least one so-called anchor point is
explicitly stored for each connected component of the mesh.

Alternatively, the Laplace operator applied to the coordi-
nate function can also be interpreted as the mean curvature
normal. However, this interpretation is only valid if the op-
erator possesses the linear preservation property, that is, if it
is zero for flat neighbourhoods. Unfortunately, this property
does not hold for any combinatorial Laplacian, where the re-
sult of the operator becomes a combination (vector sum) of
the mean curvature normal (curvature component) and a tan-
gential shift (sampling component) of the given vertex with
respect to the centre of mass of its neighbours. In turn, the
presence of the tangential part negatively affects the entropy
of the delta coordinates.

The problem is even more pronounced in the case of dy-
namic meshes, where the tangential component is commonly
very similar in all frames of the sequence. Even after dimen-
sionality reduction, there remains a substantial amount of re-
dundant information that is contained in the components of
the vectors that describe the vertex trajectories. This tangen-
tial information is then transmitted multiple times.

Unlike in static mesh encoding, the task of dynamic mesh
compression allows to distribute the cost of storing the infor-
mation needed for constructing a geometric Laplacian over
all meshes in the sequence. Having the average mesh com-
puted and transmitted, as described in the previous section,
allows us to construct, both during encoding and decoding, a

geometric Laplacian L∈Rn×n that is much closer to the lin-
ear preservation property than the combinatorial Laplacian.
The entries of L are

Lii = 1, Li j =−wi j

/
∑
k 6=i

wik, i 6= j,

with weights wi j computed according to the well-known
cotangent formula [PP93] or the MV formula [Flo03].

We finally choose l anchor points [SCOT03] vk1 , . . . ,vkl

and add l rows, where the i-th additional row contains only
one non-zero element of value 1 in the ki-th column. We re-
fer to the resulting matrix L∗ ∈ R(n+l)×n as the extended
Laplacian. Note that L∗ has full column rank and is hence
invertible in the least squares sense. In our experiments,
the MV Laplacian provides better results than the cotangent
Laplacian. Section 8 presents a comparison between the two
choices for the operator.

The encoder uses the extended geometric Laplacian to
compute the delta trajectories. To this end, the vectors that
describe the vertex trajectories in the reduced space are rear-
ranged into a matrix S = (s1, . . . ,sn)

T ∈ Rn×m and the ma-
trix of delta trajectories D = (d1, . . . ,dn+l)

T ∈ R(n+l)×m is
computed as

D = L̄∗S,

where L̄∗ is the extended geometric Laplacian computed
from the decoded average mesh, so that the encoder and the
decoder work with the same values. The values in the matrix
D have a much smaller entropy than the values in S and us-
ing the geometric Laplacian instead of the Tutte Laplacian
provides a further entropy reduction. Finally, the values in
the matrix D are uniformly quantized and encoded into the
output stream using an arithmetic coder. Optionally, these
values can also be predicted as described in Section 7.

The decoder solves the sparse and overdetermined system
of linear equations L̄∗S = D̄ in the least squares sense, yield-
ing the reconstructed trajectories

S̄ =
(
(L̄∗)T L̄∗

)−1
(L̄∗)T D̄.

A decomposition of the normal matrix can be precomputed
in order to solve the problem efficiently, one column of S̄ at
the time.

7. Encoding delta trajectories

A further compression improvement can be achieved by ef-
ficiently encoding the matrix D. To this end, we interpret the
rows dT

i ∈ Rm of this matrix as vectors associated with each
vertex and propose to encode them during a mesh traver-
sal that follows the border expansion strategy of the Edge-
breaker [RSS01] algorithm. In this scenario, a part of the
mesh is known to the decoder (initially one triangle), and
in each step a prediction of the data associated with a ver-
tex that is adjacent to the known part is computed by the
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Figure 4: Relationship between the data used for predicting delta trajectories. Note that this figure only illustrates the derivation
of the predictor. The flowchart of the prediction itself is shown in Figure 5.

encoder and the decoder. The encoder then encodes the so-
called residual, that is, the difference between the actual data
value and the prediction. In turn, the residual allows the de-
coder to correct the prediction and to expand the known part
of the mesh by one vertex.

Suppose that the vectors d̄i associated with several ver-
tices are already decoded and thus known to the decoder.
The task at hand is to predict a yet unknown vector do, as-
sociated with the vertex vo, as accurately as possible. The
key to this prediction is the availability of the average mesh
M̄ at the decoder side, which allows us to construct the ge-
ometric Laplacian L̄. This operator is used for transforming
the trajectory vectors si, but it can also be applied to the co-
ordinates of the average mesh itself in order to find its differ-
ential coordinates. There is a strong relation between these
differential coordinates (known for each vertex) and the delta
trajectories di, which we use for the prediction. Note that the
rows of D, which correspond to anchor vertices, do not get
predicted at all.

The differential coordinates of the average mesh are com-
puted as

∆ = L̄C̄,

where C̄ ∈ Rn×3 contains the vertex coordinates of the de-
coded average mesh M̄, with the x, y, and z coordinates
stacked in the first, second, and third column, respectively.
The rows δ

T
i ∈R3 of ∆ are the differential coordinates of M̄

and can also be interpreted as vectors associated with each
vertex. Each of these vectors is in fact the difference between
the weighted average of the neighbours of vi and vi itself.

The key observation of our predictor is that the delta tra-
jectory do, associated with vertex vo, can be interpreted as

differential coordinates of vo in all the frames of the ani-
mation, stacked into a vector of length 3 f and then projected
onto the reduced basis. Following this interpretation, we now
want to predict the differential coordinates in each frame.
A naive approach would be to predict them as being equal
to the corresponding differential coordinates in the average
frame, and to then express this constant delta trajectory in
the reduced basis. Such approach fails because the differen-
tial coordinates are rotation dependent, hence they change in
each frame with the movement of the mesh.

Instead, we may assume that there exists for each ver-
tex a series of f (almost) rigid transformations Ti ∈ R3×3,
i = 1, . . . , f , which transform the differential coordinates
from the average frame to the differential coordinates in each
frame (see Figure 4). Stacking these transformations into a
single matrix T = (T1, . . . ,Tf )∈R3×3 f , the prediction of the
delta trajectory in R3 f can be written as

pT
o = δ

T
o T,

where δo ∈ R3 are the differential coordinates of vo in M̄.
Expressing the prediction in the reduced basis is then equiv-
alent to multiplication by the basis matrix BT ,

d̂T
o = pT

o BT = δ
T
o T BT . (1)

Remember that in this and the following equations symbols
with a hat denote the prediction of the corresponding value.

In order to evaluate the prediction, we now have to locally
estimate the transformations that are stacked in T from the
already decoded data. For an unknown vertex vo, there are
always at least three neighbouring vertices already known to
the decoder (that is, their vectors d̄i are available). However,
for reasons of stability we use a larger number k of known
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Figure 5: One border expansion step, involving the prediction of do.

neighbouring vertices, using a breadth-first search from the
unknown vertex vo. Collecting their differential coordinates
in M̄ in the matrix A = (δ1,δ2, ...,δk)

T ∈ Rk×3, the delta
trajectories of these vertices in R3 f are the rows of

R = AT,

and multiplying R with BT transforms the data into the re-
duced basis,

Q = RBT = AT BT = (d̄1, d̄2, . . . , d̄k)
T .

The matrix Q ∈ Rk×m contains the decoded data associated
with the neighbouring vertices and we can now solve for T
in the least squares sense,

T =
(
AT A

)−1AT QB, (2)

where we exploit the orthonormality of B, that is, BT B = I.
We finally plug the solution into the prediction (1) and obtain

d̂T
o = δ

T
o
(
AT A

)−1AT QBBT = δ
T
o
(
AT A

)−1AT Q.

The prediction is evaluated by the decoder for each vertex
during the traversal, as shown in Figure 5. Finally, instead of
encoding the vector di itself, only the residual ri = di− d̂i is
quantized and encoded. The decoder receives the residual r̄i
and reconstructs the vector d̄i = r̄i + d̂i. The more accurate
this prediction is, the lower is the entropy of the residuals.
Note that the actual prediction implementation involves nei-
ther the transformation matrices Ti nor the matrix R.

This kind of prediction has the advantage of requiring
only the inversion of a single 3× 3 matrix, and it works en-
tirely in the reduced space of dimension m. Our experiments
show that the system (2) tends to be unstable for k too small,
and that the slightly higher computational cost of involving
too many neighbouring vertices does not lead to further im-
provement in compression efficiency.

We tested the influence of k on the compression perfor-
mance. Since the prediction has a negligible effect on the
distortion (it is the quantization of the residuals that causes
distortion, not the inaccuracy of the prediction), we focussed
on the resulting data rates. For k = 3 we obtained data rates
comparable or slightly worse than in the case without any
prediction of delta coordinates. Increasing k leads to a re-
duction of the data rate in all datasets, with a rather flat min-
imum usually around k = 30. Thus, in our experiments we
use k = 15 as a compromise between compression perfor-
mance and computational cost.

8. Results

Traditionally, vertex-based error measures, such as root-
mean-square or Karni-Gotsman (KG) error [KG00], are used
for evaluating the amount of distortion caused by compres-
sion. Recently, however, researchers began to use perceptual
metrics that capture the perceived distortion better than the
traditional metrics. In the field of dynamic mesh compres-
sion, a perceptual metric STED has been proposed [VS11].
This metric is based on evaluating the changes in edge
lengths, and it correlates well with the perceived distortion
of dynamic meshes in user studies performed so far.

Additionally, traditional metrics tend to behave erratically
when evaluating the results of Laplacian-based encoding.
This behaviour stems from the relative instability of the re-
sult in locations far away from anchor points: even small
changes in quantization may largely influence measures that
observe the absolute dislocations of vertices. Figure 6 illus-
trates this effect. By focussing on local relations, the per-
ceptual metrics provide a much more stable result that also
matches the human perception. Therefore, we use the STED
metric in our experiments.
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Figure 6: Example reconstructions based on 2D Laplacians.
The blue line represents the original 2D data points, the
other lines are reconstructions from delta coordinates quan-
tized using varying sizes of the quantization bin q. The mean
squared error (MSE) behaves erratically with respect to the
quantization, even though visually the reconstructions are
similar.

Figures 7 and 8 show typical rate-distortion (R-D) curves
for our algorithm as well as the state of the art. We use a
parameter optimization strategy similar to the one described
in [VP11] to determine the quantization constants and the
number of preserved basis vectors m. Using the MV Lapla-
cian reduces the required data rate, measured in bits per
frame per vertex (bpfv), by 22% on average, even without
predicting delta trajectories. Including the prediction scheme
for the latter further reduces the data rate by 30% on aver-
age with respect to compression with combinatorial Lapla-
cians. For most of the measurements, we use the STED er-
ror metric [VS11], since it has been shown to correlate well
with perceived distortion. The proposed algorithm, however,
also brings improvement in compression performance with
respect to traditional error measures, such as the KG error,
as demonstrated in Figure 9. We refer to the accompanying
video for a visual comparison of the resulting animations.

Table 1 shows the data rates, distortions, and residual en-
tropies for various other models. It can be seen that our algo-
rithm significantly improves the performance when there is
a sufficient difference between the combinatorial and the ge-
ometric Laplacian of the given surface, that is, for meshes
with non-uniform sampling. Meshes with more uniform
sampling, such as the dance sequence, also benefit from us-
ing the geometric Laplacian, although the amount of im-
provement is smaller.

Finally, Table 2 shows the compression and decompres-
sion run times for our approach, compared to the run times of
the scheme based on combinatorial Laplacians. If the delta
trajectories are not predicted, the only source of slowdown
is the computation and encoding of the average mesh, since
the time required for solving the Laplacian system remains
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Figure 7: R-D curves for the squat2 dataset [VBMP08],
measured in STED error.
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measured in STED error.
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Figure 9: R-D curves for the samba dataset [VBMP08],
measured in KG error.

the same. The delta trajectory prediction requires additional
time for evaluating the predictions, but the expense is rather
small. It depends on the application, whether such additional
expense is worth the reduced data rate, but the encoding and
decoding times remain well within the limits of practical ap-
plicability.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

152



L. Váša, S. Marras, K. Hormann, G. Brunnett / Compressing dynamic meshes with geometric Laplacians

Tutte Laplacian MV Laplacian MV Laplacian + DC prediction
model dist. rate H rate ∆rate H ∆H rate ∆rate H ∆H
samba 0.02 0.837 2.497 0.535 36.0% 1.123 55.0% 0.470 43.9% 0.930 62.8%
9971V, 175F 0.01 1.722 2.893 1.119 35.0% 1.584 45.2% 1.019 40.8% 1.405 51.4%
squat2 0.02 0.435 3.099 0.293 32.7% 0.973 68.6% 0.253 41.7% 0.763 75.4%
10002V, 250F 0.01 1.122 3.011 0.816 27.3% 1.598 46.9% 0.751 33.1% 1.452 51.8%
humanoid 0.02 0.519 3.463 0.398 23.2% 1.942 43.9% 0.357 31.2% 1.680 51.5%
7646V, 154F 0.01 0.726 3.275 0.577 20.5% 2.120 35.3% 0.513 29.3% 1.882 42.6%
cowheavy 0.05 0.765 2.879 0.678 11.4% 2.046 28.9% 0.644 15.8% 1.780 38.2%
2904V, 204F 0.03 1.337 3.142 1.169 12.5% 2.397 23.7% 1.126 15.8% 2.204 29.9%
dance 0.02 0.470 2.154 0.397 15.4% 1.785 17.1% 0.344 26.8% 1.211 43.8%
7061V, 201F 0.01 0.688 2.858 0.606 11.9% 2.304 19.4% 0.527 23.3% 1.670 41.6%
march2 0.02 0.869 3.059 0.528 39.2% 1.066 65.2% 0.449 48.3% 0.908 70.3%
10002V, 250F 0.01 1.807 2.861 1.299 28.1% 1.447 49.4% 1.182 34.6% 1.342 53.1%
camel 0.03 1.071 1.674 0.978 8.7% 1.201 28.2% 0.861 19.6% 0.988 41.0%
21885V, 48F 0.01 2.572 2.318 2.296 10.8% 1.887 18.6% 2.089 18.8% 1.709 26,3%

Table 1: Data rates and average entropies of residuals (H) for various models. The distortion is measured by the STED metric,
the data rates are in bits per frame per vertex.

Tutte Laplacian Average MV Laplacian MV Laplacian
mesh without DC prediction with DC prediction

model encode decode build encode decode encode decode encode decode
samba 2521 790 1548 380 304 2543 815 2739 1013
squat2 3493 804 1581 216 173 3670 872 3680 1056
humanoid 1481 359 1192 179 143 1413 314 1671 454
cowheavy 1089 175 453 58 46 1031 141 1174 201
dance 2004 397 1132 138 110 1970 420 2031 460
march2 4044 1322 1599 215 172 4116 1305 4381 1546
camel 2240 1228 3531 482 386 2338 1159 2721 1580

Table 2: Encoding/decoding times (in milliseconds) for various models. The total encoding time is the sum of times required
for building and encoding the average mesh and the corresponding encoding time. Likewise, the total decoding time is the sum
of the time required for decoding the average mesh and the decoding time.

9. Conclusion

We presented a significant improvement to the CODDYAC
algorithm that reduces the compression rate by removing
the redundancy in a dynamic mesh. The choice of Lapla-
cian weights which depend on the geometry of the shape,
like those of the MV Laplacian, proves to be a better choice
than uniform weights based on connectivity only, since it
helps to reduce the tangential shift redundancy in the delta
trajectories. The overhead introduced by computing and en-
coding the average mesh is balanced by a significantly better
compression rate, while the computational cost of the encod-
ing/decoding procedure is affected only marginally by the
choice of weights. Encoding delta trajectories computed by
geometric Laplace operators reduces the data rates by 22%
on average in our experiments.

In addition to this improvement, we exploit the spatial and
temporal coherence of vertex trajectories to develop a novel
predictor approach, which, by assuming local rigidness of

the motion, predicts the behaviour of the differential coordi-
nates of a vertex by tracking the trajectories of the differen-
tial coordinates of the neighbouring vertices. This predictor
allows us to reduce the bitrate by 30% on average in our ex-
periments, while introducing only a negligible overhead in
the process. The whole procedure is computationally cheap
and outperforms state-of-the-art methods for compressing
dynamic meshes.

A possible limitation arises when dealing with frames
characterized by very regular spatial sampling. In these
cases, the geometric and combinatorial Laplacians are quite
similar and, as a consequence, the compression rates are
almost equal, with the disadvantage that our algorithm re-
quires additional storage to encode the average mesh. How-
ever, we observed that even in these cases a gain may be
reached by employing the spatio-temporal predictor to com-
press the delta trajectories (see the last rows of Table 1).
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