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Abstract
In this paper, we investigate the possibilities of efficient encoding of UV coordinates associated with vertices of
a triangle mesh. Since most parametrization schemes attempt to achieve at least some level of conformality, we
exploit the similarity of the shapes of triangles in the mesh and in the parametrization. We propose two approaches
building on this idea: first, applying a recently proposed generalization of the parallelogram predictor, using the
inner angles of mesh triangles corresponding to the UV-space triangles. Second, we propose an encoding method
based on discrete Laplace operator, which also allows exploiting the information contained in the mesh geometry
to efficiently encode the parametrization. Our experiments show that the proposed approach leads to savings of
up to 3 bits per UV vertex, without loss of precision.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

The amount of details captured in 3D models rises constantly
in the recent years, and this trend is expected in the future as
well. The high resolution of the meshes used to represent the
models leads directly to high storage and transmission costs.
In order to alleviate these costs, a variety of compression and
simplification algorithms has been proposed in the last two
decades.

Rendering of meshes usually requires additional data de-
scribing the surface, such as surface color, reflectivity and
other photometric values. These values can be associated
with vertices, but that in turn leads to even higher demands
on the mesh resolution. A common approach to alleviating
this problem is to compute a mapping of the surface into
a 2D space, and express the surface properties as a 2D tex-
ture, i.e. an sampled image. This in turn allows using a lower
number of vertices. Recently, approaches such as normal
mapping or displacement mapping are being used to capture
even geometric details of the surface in the form of a texture.
This means that in practice it is possible to display a detailed
3D object represented with a relatively small number of ver-
tices, yet at the cost of needing additional data associated
with each vertex. Compression of this additional data is the
topic of our contribution.

A textured mesh is described by its connectivity (mesh tri-
angles), geometry (3D positions of mesh vertices), a texture
image and a mapping that describes the parameterization of
the 3D surface in the 2D space. This mapping is usually ex-
pressed in terms of a set of 2D vertices (we call them texture
vertices, or texture geometry in general), and a correspon-
dence map, that assigns a texture vertex to each corner of
each mesh triangle. These mapped triangles will be referred
to as texture triangles. In general, there may be up to 6 times
as many texture vertices as there are mesh vertices, which
corresponds to the situation where a unique texture vertex
is associated to each triangle corner in the mesh. In prac-
tice, however, only a single texture vertex is usually used for
all corners incident to a particular mesh vertex, making the
number of mesh vertices and texture vertices roughly equal.
Having two coordinates per texture vertex makes up for a
considerable amount of data that have to be stored. In this
paper, we address the issue of efficient encoding of the tex-
ture vertices, and we also touch on the encoding of the map-
ping between mesh triangles and texture triangles.

There are many ways of computing a parameterization of
a given triangle mesh, with different properties. Ideally, the
parameterization would preserve angles (conformality) and
areas, but such so-called isometric parameterization can be
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only found for a very small class of unfoldable meshes. Gen-
erally, parameterization algorithms attempt to find a balance
between preservation of angles and areas, and artists who
create parameterizations manually also follow these goals
intuitively.

Regardless of the particular method used to compute the
parameterization, it is therefore reasonable to expect a cer-
tain level of similarity between the mesh triangles and their
corresponding texture triangles in practice. This similarity
manifests itself in turn as certain redundancy in texture data
(texture vertex positions) with respect to mesh data (mesh
vertex positions). Our aim is to exploit this similarity, reduc-
ing the redundancy by prediction, thus reducing the amount
of data required to describe the parameterization.

In a practical scenario, the encoding of a textured mesh is
done in following steps:

• the mesh connectivity is encoded,
• the coordinates of mesh vertices are encoded,
• the texture connectivity is encoded,
• the coordinates of texture vertices are encoded.

Hence we assume, that at the point when the texture con-
nectivity and geometry is being decoded, the mesh geome-
try and connectivity is already available at the decoder side.
This allows us to use it in our algorithms.

In this paper, we present two approaches building on the
idea of exploiting the similarity between mesh geometry and
texture geometry:

1. We use the recently proposed generalization of the paral-
lelogram predictor to predict the coordinates of the tex-
ture vertices. The form of the predictor allows us to use
the knowledge of the shapes of the mesh triangles to im-
prove the accuracy of the prediction and thus reduce the
data rate. This procedure will be described in section 4.

2. We employ the discrete Laplace operator to transform
the texture coordinates. Knowledge of the mesh vertex
positions allows us to build a Laplace operator that pro-
duces residuals of lower entropy, thus reducing the re-
quired data rate. This procedure will be described in sec-
tion 5.

The first approach is easy to implement and fast to exe-
cute, while the second one provides lower data rates in some
situations, at the cost of introducing the necessity of solving
a large sparse system of linear equations at the decoder. The
comparison of the two approaches and the state of the art
will be given in section 6.

Apart form these two algorithms that encode the coordi-
nates of texture vertices, we also revisit the problem of en-
coding of texture connectivity, describing a simplified ap-
proach that can be used in most practical scenarios and that
turns out to be more efficient than some of the state of the art
approaches. The encoding scheme is described in section 3.

2. Related Work

The problem of encoding of texture connectivity and geom-
etry did attract some attention of researchers in the past,
although not as much as the related problem of mesh en-
coding. These two problems are commonly addressed in a
joint fashion, together with other per vertex or per corner
properties, such as vertex normals or vertex colors. Our pro-
posed approach builds on methods suggested for mesh en-
coding, however, it is independent of the particular method
used for encoding of the mesh. Our proposal focuses on how
to modify the mesh encoding techniques in order to exploit
the mesh connectivity and geometry data that is available at
the decoder.

There exists a variety of methods for encoding of mesh
connectivity. Starting from the encoding of vertex spanning
tree and triangle spanning tree in the Topological Surgery al-
gorithm by Taubin and Rossignac [TR98], through the Edge-
breaker algorithm with guaranteed upper bound of 2 bits per
triangle by Rossignac [Ros99] up to to the valence driven
algorithms by Touma and Gotsman [TG98] and Kälberer et
al. [KPRW05], the algorithms are getting quite close to the
theoretical limit of 3.245 bits per triangle, sometimes even
improving on it by exploiting the uneven probability distri-
bution of possible connectivities. In the current state of the
art, the encoded connectivity usually represents about 5-15%
of the data rate required for encoding a triangle mesh, with
the rest being occupied by the encoded vertex coordinates.

In order to encode the mesh vertex positions efficiently,
it is common to apply the predict-correct approach. In this
scenario, the decoder forms a prediction of the value that is
about to be decoded from the data stream, based on the data
available to it (i.e. from the positions of previously decoded
vertices). The encoder mimics the prediction and instead of
the value itself, it only encodes the difference between the
prediction and the value, called correction or residual. The
decoder then adds the correction to the prediction, obtaining
the desired value. If the predictions are reasonably accurate,
then there appears a peak in the probability distribution of
the residuals around zero. The higher is the accuracy of the
prediction, the steeper is the peak, and the lower is the en-
tropy of the residuals. The reduction of entropy is then fi-
nally exploited by an entropy coder, such as the Huffman
coder [Huf52] or an adaptive arithmetic coder [MWS03].
Most of the mesh compression algorithms build on this gen-
eral approach in one way or another, we are only going to
mention three approaches, because they represent the build-
ing stones for our encoding scheme for texture coordinates.

The most commonly used predictor of this kind is the
parallelogram predictor, introduced by Touma and Gotsman
[TG98]. The prediction v′O of a vertex vO is based on posi-
tions of three vertices vL, vR and vB, which build an adjacent
triangle that has been previously decoded. The prediction
has a simple form v′O = vL+vR−vB, known as the parallelo-
gram rule, as it can be geometrically interpreted as building
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a parallelogram from the known triangle (see fig. 4). Note
that values with a prime denote here and in the following a
prediction or estimation of the corresponding value.

Recently, this approach has been generalised by Váša and
Brunnett [VB13] to incorporate an estimation of the inner
angles in the prediction stencil. The algorithm first estimates
the inner angles in the prediction stencil from the mesh con-
nectivity, and then uses a weighted extension of the parallel-
ogram rule. This leads to an improved accuracy of the pre-
diction and in turn to a reduction of the required data rate.

Another approach to mesh encoding has been taken by
Sorkine et al [SCOT03]. Their high-pass encoding can be
interpreted in terms of the predict-correct scenario as pre-
dicting each vertex in the barycentre of its 1-ring neighbour-
hood. The corrections with respect to such predictions are
being quantized and encoded, however, in order to recon-
struct the original vertex positions, it is necessary to solve a
sparse system of linear equations which inverts the process
of residual computation.

Encoding of texture connectivity can be achieved by ap-
plying any of the mesh connectivity encoders, given that the
respective conditions are met. In particular, the connectivity
coders usually only handle manifold connectivities, i.e. con-
nectivities where the one ring neighbourhood of each vertex
is formed by a closed disk of triangles or by a single triangle
fan.

Researchers have also noted that in most practical cases,
the texture connectivity is closely related to the mesh con-
nectivity. There is always a one-on-one correspondence be-
tween the mesh triangles and texture triangles, and also the
texture connectivity can in most cases be derived from the
mesh connectivity by cutting some of the edges. An edge
in the mesh connectivity, that is split into two edges in the
texture connectivity is denoted as crease edge (see fig. 1).

Gumhold and Straßer [GS98] suggest encoding one bit
per inner edge in the mesh connectivity, which determines,
whether this edge is a crease edge or not. For crease edges,
two additional bits get encoded, which for each endpoint of
the edge determine whether the endpoint is represented by
just a single texture vertex or by two texture vertices, hence
at least one of these two bits is always true.

A slightly different approach has been taken by Taubin
[THLR98], who suggests encoding one bit per vertex, which
determines, whether there is any crease edge incident with it.
In case the bit indicates presence of crease edges, a series of
additional bits is emitted, indicating for each edge emanating
from the vertex whether it is a crease edge or not.

This approach has been then improved upon by Isenburg
and Snoeyink [IS00], who notice that there are some cases
when the bits themselves can be predicted. For example, if
a vertex of degree n is determined to have crease edges em-
anating from it, and the first n− 1 edges are determined not
to be the crease edges, then the last bit does not have to be
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Figure 1: Crease edge. The rows of the tables represent tri-
angles in the different versions of the connectivity.

emitted, since it certainly must indicate that the n-th edge is
a crease edge.

Most of the approaches mentioned so far employ the par-
allelogram rule for prediction of coordinates of texture ver-
tices. It has been noted by Isenburg and Snoeyink [IS03],
that this kind of prediction is naturally highly inaccurate for
the crease edges, and they have suggested using a different
predictor for such cases, together with a different context
of an adaptive arithmetic encoder, so that the context of the
encoder does not get disrupted by the sudden change in pre-
diction accuracy.

Finally, since the objective is to provide the decoder with
a mesh parameterization that is compatible with a particular
texture, it is also possible to achieve that by letting the de-
coder compute the parameterization directly from the mesh,
while the encoder only warps the input texture so that it
matches the mapping generated by the decoder [SCO01].
Such scenario does not require any data to describe the pa-
rameterization, on the other hand it suffers from problems
such as quality loss of the texture due to the warping and
performance issues following from the need to construct the
mapping at the decoder.

3. Encoding of UV connectivity

In order to transmit the texture geometry, we need the tex-
ture connectivity to be available at the decoder side. Our ap-
proach is independent of the algorithm used for texture con-
nectivity transmission, i.e. any of the algorithms mentioned
in the previous section can be used. In our implementation,
we use a simplified strategy that allows for efficient coding,
given that the texture connectivity is manifold.
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Our approach, similarly to previous proposals, builds on
the idea that the texture connectivity can be derived from
the mesh connectivity by identifying the set of crease edges.
Indeed, this is the case for most practical parameterization
approaches, which usually constitute of a mesh cutting al-
gorithm, such as the Seamster [SH02], which cuts some
of the edges, followed by a particular unfolding procedure
[HLS07], which does not alter the connectivity. In our ap-
proach we thus encode a single bit per mesh edge, identify-
ing whether or not the edge is a crease edge. In contrast with
the approach by Gumhold and Straßer, we do not encode
additional bits in the case of crease edges. This approach is
motivated by the fact that only one of following cases can
occur for a crease edge:

1. a vertex v is incident with a single crease edge. In that
case, the additional bits would indicate "single vertex" at
the endpoint v, and "two vertices" on the other endpoint
(if there was a "single vertex" on the other endpoint, then
the edge would not be a crease edge). Storing the flags is
therefore not necessary (see Figure 2A).

2. a vertex v is incident with more then one crease edge. In
that case, each of the crease edges would be flagged "two
vertices" at the endpoint v. Therefore, the flags again do
not have to be stored explicitly. Cases when some of the
endpoints were marked as "single vertex" and others as
"two vertices" always lead to a complex vertex in the tex-
ture connectivity (see Figure 2B). In such case, we resort
to duplicating the vertex, because we require manifold
texture connectivity for the following step.

In our approach, the texture connectivity is always mani-
fold, which allows traversing it instead of the mesh connec-
tivity, contrasting with the previous approaches. This allows
us to avoid the problems of choosing a proper predictor for
the crease edges, since the traversal never performs a pre-
diction across a crease edge. Our proposed single edge bit
encoding represents some limitation on the possible texture
connectivities that can be expressed, this is however true for
the other texture connectivity encoding algorithms as well.
In particular, none of the algorithms allows having two tex-
ture triangles adjacent, if they are not adjacent in the mesh
connectivity. This problem is equally rare in practice.

It has been previously argued [IS00] that it is more effi-
cient to encode a single crease bit per vertex, which indicates
whether or not there are any crease edges incident with that
edge, and then only transmit the crease bits for the incident
edges if it is indicated that there are any. Unfortunately, the
comparison with the single edge bit has been done using a
different encoding scheme for the bits - for the edge bits, di-
rect encoding (1 bit per flag) has been used, while the vertex
bits have been encoded using an adaptive arithmetic coder,
which allowed exploiting their probability distribution. We
argue, that if arithmetic coding is used for the edge bits, then
it theoretically outperforms the vertex bit strategy.

Denote pc the ratio of crease edges in a mesh. Encoding
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Figure 2: Crease edges. Asterisk denotes crease edge end-
points marked as "single vertex" by the Gumhold and
Straßer algorithm [GS98]. The rows of the tables represent
triangles in the different versions of the connectivity.
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Figure 3: Theoretical data rates for texture connectivity.

the edge crease bits amounts to encoding values of entropy

Hce =−
(

pclog2(pc)+(1− pc)log2(1− pc)
)
. (1)

In total, roughly 3V such flags are required to encode the tex-
ture connectivity (V is the number of vertices, in connected
triangle meshes there are roughly 3V edges). Therefore, the
expected bitrate per vertex is bce = 3Hce.

In contrast to that, the probability of a vertex being a
crease vertex can be estimated as pcv = 1− (1− pc)

6, since
we can assume six edges incident with a vertex on average.
The entropy of such vertex flag is

Hcv =−
(

pcvlog2(pcv)+(1− pcv)log2(1− pcv)
)
. (2)

Additionally, for each crease vertex, roughly 6 crease edge
bits have to be encoded. Therefore, the total number of bits
per vertex needed for this approach is bcv = Hcv + 6pcvHce.
Figure 3 compares the bitrates for varying probability of
crease edges. It can be seen, that the crease edge bit scenario
outperforms the crease vertex bit scenario for any probabil-
ity pc.

After the connectivity is decoded, it can be traversed in a
fashion similar to the Edgebreaker algorithm, i.e. adding one
triangle to the processed part of the mesh at the time. If the
texture coordinates of the tip vertex are not yet known to the
decoder, then they are predicted and encoded/decoded. The
next section deals with the prediction.

4. Encoding of texture geometry

A natural choice for the predictor of the texture vertex coor-
dinates is the parallelogram predictor. It is possible to use the
same formulation of the predictor as in the case of mesh ver-
tex prediction, only this time working with 2D UV coordi-
nates instead of 3D XYZ coordinates. Additionally, one can
expect that the residuals will be smaller in the UV case, be-
cause there is one degree of freedom less: in the 2D case, the
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Figure 4: Prediction stencil.

prediction stencil is always planar, and therefore the residu-
als do not have any normal component.

The key observation of our algorithm is that at this point,
we can assume that the mesh geometry has been already de-
coded, and thus it can be used to improve the prediction of
the UV coordinates. Most mesh unfolding algorithms strive
to preserve the shapes of mesh triangles in the texture space.
Therefore the shapes of the mesh triangles can be used to
guide the predictor of the UV vertex coordinates.

Our proposal is to use the generalized weighted predictor,
proposed recently by Váša and Brunnett [VB13]. It uses for
each prediction two additional weights w1 and w2 that influ-
ence the desired shape of the prediction stencil, hence it is no
longer necessarily a parallelogram. The weighted predictor
takes following form:

v′O = w1vL +w2vR +(1−w1−w2)vB. (3)

The weights are determined from an estimation of the in-
ner angles in the prediction stencil. For a prediction stencil
depicted in figure 4, the weights are:

w1 =
cot(β′)+cot(δ′)
cot(δ′)+cot(γ′) ,

w2 =
cot(α′)+cot(γ′)
cot(δ′)+cot(γ′) . (4)

For a derivation of the weights see [VB13].

While for mesh encoding, the angles α, β, γ and δ are
estimated from the vertex degrees, we propose a different
approach. Since there is a bijective correspondence between
the mesh triangles and texture triangles, it is possible to de-
termine the corresponding pair of mesh triangles for each
prediction stencil used in texture coordinates encoding. The
inner angles of these mesh triangles are known to the de-
coder, and they can be used as estimates of the inner angles
in the texture space prediction stencil.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

29



Libor Váša and Guido Brunnett / Efficient encoding of texture coordinates guided by mesh geometry

The process of using angles from mesh triangles as es-
timates of inner angles of texture triangles builds on the as-
sumed (at least partial) conformality of the parameterization.
Conformality, however, does not imply equivalence of the
inner angles, but merely preservation of angles in the tangen-
tial plane of the surface. Therefore, it makes sense to project
the angles from the surface onto the tangential plane, and use
the projection as estimate of inner angles in texture triangles.
The projection can be done in many sophisticated manners,
in our experiments we however used a simple normalization
approach. For each vertex vi, we compute the sum of its in-
cident inner angles

ai = ∑
j∈Nc(i)

φ j, (5)

where Nc(i) is the set of inner corners incident with vi, and
φ j is he inner angle in the given corner. Finally, for the com-
putation of weights, we use angles θ j = (2πφ j)/ai, j ∈Nc(i)
for inner vertices. Inner angles incident with border vertices
of the texture connectivity are not normalised, i.e. θ j = φ j.

The results of using the weighted predictor will be dis-
cussed in section 6. There is, however, a different way of
encoding the texture geometry, based on discrete Laplace
operator. This will be discussed next.

5. Laplacian encoding of UV coordinates

In the previous section, we have discussed prediction of tex-
ture coordinates one by one during a traversal of the texture
connectivity. In contrast to that, in this section, a method will
be discussed, which can be interpreted as predicting all the
texture coordinates at once, using one ring neighbourhood.
This approach is based on the high-pass encoding of triangle
meshes, proposed by Sorkine at al. [SCOT03]. The original
idea can be interpreted as predicting each vertex (mesh or
texture) to lie at the barycentre of its 1-ring neighbourhood:

v′i =
1

‖N(i)‖ ∑
j∈N(i)

v j, (6)

where N(i) is the set of all 1-ring neighbours of vi.

It is not difficult to compute the residuals for such predic-
tion, however, reconstructing the original coordinates from
the residuals is more difficult, because it cannot be done
in the one-by-one fashion. One possibility to do that is to
stack all the linear equations used to construct the residuals
ri = v′i − vi into a matrix L. This matrix is in fact equivalent
to the combinatorial Tutte Laplacian of the mesh. Multiply-
ing the vector of texture vertex coordinates by this matrix
produces a vector of so-called delta coordinates, which are
in fact equivalent to the residuals.

On its own, the matrix L it is not invertible, unless ad-
ditional rows representing the so-called anchor vertices are
added to the linear system. Each such row contains a single
"1" at a column corresponding to the anchor vertex, mak-
ing the coordinates of the anchor vertex part of the vector of

Figure 5: Local mesh geometry.

residuals and enforcing them in the reconstruction process.
This way a rectangular matrix L∗ is produced, which is solv-
able it in the least squares sense, obtaining the coordinates
from the residuals. The strategy for the choice of anchor
points is to select a random one for each connected compo-
nent, and then perform an intermediate reconstruction at the
encoder, identifying the vertex with the largest reconstruc-
tion error. This vertex is then used as an additional anchor
vertex and the process is repeated until the required number
of anchor points is reached. For more information on such
approach to mesh encoding and details on anchor selection,
see [SCOT03] and [CCOST05].

Our proposal is to replace the averaging prediction of
equation (6) by a more precise one, building on the informa-
tion contained in the available mesh geometry. Changing the
prediction is equivalent to choosing a different version of the
discrete Laplace operator. A natural choice is a version that
produces a zero residual for flat surfaces. Such Laplacian
operators are said to have the so-called linear reconstruc-
tion property. This property does not determine the Lapla-
cian fully, and the literature offers multiple choices. We did
experiments with the Cotan Laplacian [PJP93] and with the
Mean Value (MV) Laplacian [Flo03].

Both of these choices can be expressed by replacing eq. 6
by a weighted generalization:

v′i =
1

∑ j∈N(i) wi j
∑

j∈N(i)
wi jv j, (7)

where wi j is computed from the geometry of the mesh sur-
rounding the i-th vertex (see figure 5) as

wcotan
i j = cot(γ)+ cot(θ),

wMV
i j =

tan(α/2)+ tan(β/2)
ri j

, (8)

where ri j is the distance between vi and v j.

Note that the neighbourhood relations of the Laplacian
should be built from the texture connectivity rather than
mesh connectivity. We again assume, that the texture con-
nectivity can only differ from the mesh connectivity in that
crease edges are introduced. For each texture triangle, a cor-
responding mesh triangle always exists, and thus it is possi-

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

30



Libor Váša and Guido Brunnett / Efficient encoding of texture coordinates guided by mesh geometry

texture Weighted Laplacian
model triangles vertices parameterization vertices RMSE Parallelogram prediction Tutte Cotan MV
Horse 96966 48485 ABF [SdS01] 52345 0.0015 2.77 2.59 8.47 2.00 2.12

0.0001 6.33 2.95 16.57 4.87 6.30
ABF++ [SLMB05] 52345 0.0015 2.80 2.53 9.05 2.01 2.13

0.0001 6.37 2.99 16.63 4.83 6.25
DPBF [SdS01] 52345 0.0015 2.77 2.55 8.05 2.87 2.63

0.0001 6.45 3.23 16.70 9.66 10.13
LSCM [LPRM02] 53460 0.0015 2.86 2.63 9.30 2.69 2.63

0.0001 6.48 2.99 18.04 6.02 7.33
HLSCM [RL03] 53460 0.0015 2.82 2.61 9.31 2.70 2.63

0.0001 6.48 2.99 18.05 5.42 7.32
Fiery 119344 59727 ABF [SdS01] 66216 0.0030 2.61 2.62 4.12 1.82 1.79

0.0001 7.61 3.07 13.22 7.97 6.44
Victoria 32794 17259 manual 19763 0.0008 7.47 4.83 12.48 9.63 9.58

0.0001 13.74 9.49 19.84 16.28 15.73
Bimba 17710 8857 ABF [SdS01] 9285 0.0015 4.59 3.07 7.21 1.56 1.24

0.0001 12.68 5.64 15.87 7.94 7.19
Frog 40244 20834 manual 21762 0.0015 4.56 4.03 8.79 7.64 6.86

0.0001 10.29 8.96 17.43 15.55 14.64
Bunny 51414 29570 unknown 29609 0.0030 3.50 3.00 6.62 3.22 3.21

0.0001 12.52 6.58 17.33 12.77 12.17
Kachel 582428 292053 LSCM [LPRM02] 294051 0.0004 3.26 2.82 7.37 0.27 0.29

0.0001 8.80 2.84 12.78 0.36 0.39

Table 1: Data rates for different models and different error levels. All data rates are in bits per vertex, for texture geometry
only, i.e. the cost of encoding texture connectivity is not included.

ble to evaluate the corresponding angles and/or edge lengths
required for the construction of the geometric Laplacian.

Note that in order to follow the prediction/correction sce-
nario, we normalize each row of the Laplacian matrix so that
the value of all elements on the diagonal is -1. Doing that al-
lows us to quantize the delta coordinates uniformly, since
they are equivalent to prediction residuals.

The whole process is performed in following steps:

1. mesh connectivity and geometry is transmitted
2. texture connectivity is transmitted
3. geometric Laplacian L is constructed at both the encoder

and the decoder from texture connectivity and mesh ge-
ometry.

4. additional anchor points are added to form the extended
invertible Laplacian L∗.

5. coordinates of texture vertices are stacked into vectors u
and v.

6. residuals ru = L∗u and rv = L∗v are evaluated, quantized
and transmitted to the decoder.

7. The decoder reconstructs the texture coordinates by in-
verting the process, i.e. û = L∗−1ru and v̂ = L∗−1rv.

Note that here and in the following, a value with a hat
denotes a distorted version of the corresponding value, as
known to the decoder.

6. Results

We have measured the required data rates and introduced
distortions for several textured models. The distortion of the
texture coordinates has been measured in terms of the stan-
dard Root Mean Squared Error (RMSE), i.e. having original
texture coordinates xi, i = 0..V − 1, where V is the number
of texture vertices, and their corresponding distorted coordi-
nates x̂i, i = 0..V −1, the RMSE is computed as

RMSE =

√√√√ 1
V

V−1

∑
i=0
‖xi− x̂i‖2. (9)

In the experiments, we have used exact angles from the orig-
inal mesh geometry, assuming that it has been encoded loss-
lessly. In case of loss of precision in mesh geometry, it is
expected that the performance of our proposed coders will
decrease slightly, depending on the amount of distortion in-
troduced.

For the experiments, we have used several parameterized
models, representing the usual applications. We have used
several models with existing parameterization created by
artists ("Victoria 4.2" and "Frog" models from DAZ Studio
4.5). Apart from that, we have created parameterizations for
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Figure 6: Rate-distortion chart for the DAZ Studio Fiery
scene.
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Figure 7: Rate-distortion chart for the Victoria model.

other models using the graphite† tool, which offers several
methods of parameterization computation.

Figures 6 and 7 show the typical results obtained in most
cases. The Laplacian based encodings generally provide bet-
ter performance in the area of very low data rates, while the
traversal based approaches are the better choice for higher
data rates and higher accuracy of reconstruction. The pro-
posed modification of parallelogram prediction using the
weighted predictor leads to substantial savings in terms of
data rate required for a given precision. The saving may
reach up to 60% of the data rate at RMSE of 10−4.

Using a geometrical Laplacian also provides a substan-
tial improvement of compression performance over the use
of Tutte (combinatorial) Laplacian. In our experiments, we
did not observe any significant difference between the Cotan
and MV Laplacian, both of these discretizations provide re-
sults that are about 50% better than a combinatorial Lapla-

† http://alice.loria.fr/index.php/software/3-platform/22-
graphite.html

cian based encoding in terms of reduced data rate at the same
reconstruction error.

Table 1 summarizes the results for different datasets
and parameterizations. We have obtained an improvement
of compression performance for every parameterization
method that we have tested. Generally, however, the im-
provement is smaller for parameterizations created manually
by artists, probably because of limited conformality in such
cases. Figure 8 illustrates the effect of reducing the distortion
visually.

The table 2 documents the running times for tested com-
pression methods. Note that the key factor influencing the
running time of Laplacian based encoding is the searching
for optimal anchor point positions, where a large sparse lin-
ear system is solved for each anchor. We use 50 anchor
points additional to those required for matrix regularity. The
time required for decoding in Laplacian based coders does
not significantly depend on the number of used anchors, be-
cause the system is only solved once.

We have experimented with distributing the anchor points
randomly, however, the results were not satisfactory. Figure
9 documents the dependency of the performance of Lapla-
cian based encoding on the number of anchor points. It fol-
lows from the nature of Laplacian based encoding that some
areas may become dislocated in the reconstruction by a large
offset, and the optimal anchor placement succeeds in lo-
cating these particular areas and correcting them. Trying to
achieve the same result by using a larger number of random
anchors leads to encoding inefficiency, since the coordinates
of anchor points cannot be predicted. Note that the chaotic
behaviour of the dependency for low number of anchors is
caused by the fact that Laplacian encoding does not involve
any means of avoiding error accumulation, except for the
anchor points. Therefore sometimes, due to random factors,
the accumulated error in areas far away from anchor points
cancels out, while other times it does not.

Generally, using a geometric Laplacian instead of com-
binatorial does not lead to any significant slowdown, nei-
ther on the encoder side nor on the decoder side. Using of
weighted predictor instead of parallelogram usually leads to
a slight slowdown on both sides of the process, on average
we have obtained a slowdown of 4% at the encoder side and
15% at the decoder side. Since the processing times of the
traversal based coders are generally very short, we believe
that the gained performance is worth the increase in process-
ing time. For example, the decoding of the Fiery dataset is
about 36ms slower with the weighted prediction, while about
436kB of data is saved. That means that only with a band-
width of more than 12MB/s is it faster to transmit the data
using parallelogram prediction.
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original parallelogram
prediction

weighted parallelogram
prediction

Tutte Laplacian coding Mean Value Laplacian
coding

Figure 8: Visual coparison on the Victoria model. All of the distorted versions were reconstructed at a data rate of 5.25 bpv.
Notice the different character of the distortion: while the parallelogram based approaches produce a small, noisy local error,
the Laplacian based approaches generally produce a smoother error that can be easily spotted on the borders of texture patches
(see the neck of the figure).

Horse Fiery Victoria Bimba Frog Bunny Kachel
Parallelogram enc. 334 451 144 78 151 129 2681

dec. 175 246 81 39 81 67 1631
Weighted enc. 388 484 153 67 167 129 2633

dec. 220 278 89 44 98 75 1630
Tutte 50 enc. 29933 39091 8621 5320 14232 9232 253641

anchors dec. 1582 2122 527 271 742 488 12277
100 enc. 57917 75963 16795 10305 25198 17898 497048

anchors dec. 1622 2022 502 278 640 480 12792
Cotan 50 enc. 30105 39287 8702 5313 13016 9336 255606

anchors dec. 1850 2284 543 309 702 528 12963
100 enc. 58017 76212 16889 10396 25268 17996 497520

anchors dec. 1713 2343 558 309 724 518 13088
MV 50 enc. 29852 39262 8677 5320 13054 9350 254624

anchors dec. 1750 2206 558 309 748 516 13260
100 enc. 57954 76044 16761 10333 25238 18174 496455

anchors dec. 1738 2200 574 306 742 518 13041

Table 2: Processing times for encoding and decoding using different methods. All times are in milliseconds.

7. Conclusions

We have presented two prediction algorithms designed
specifically for compression of texture coordinates, exploit-
ing the information about mesh geometry which is assumed
to be available at the decoder side. The two methods are
based on the assumed conformality, which is at least par-
tially inherent to most parameterization methods as well as
to manually created parameterizations. Our results demon-
strate, that in practical cases of both manual and automatic
parameterizations, using the proposed algorithms leads to a
saving of more than 50% of the required data rate compared
with using direct extensions of mesh compression methods
such as parallelogram prediction.

The Laplacian based encoding is generally better for very
low bitrates, but it suffers from higher computational costs,
in particular on the encoding side, while the decoding times
remain within the limits of practical applicability for moder-
ately large meshes. The proposed improvements work only
if the parameterization is indeed at least partially conformal

and continuous, yet conformality is the objective of most
automatic parameterization methods and it also corresponds
with the objectives artists follow when creating a parameter-
ization manually. Of course, in the extreme case when each
geometry triangle is mapped to an isolated texture triangle
brings our proposal no improvement at all. Also, for more
regular meshes the prediction stencils get closer to the par-
allelogram shape, which leads to a smaller improvement by
using a weighted prediction and thus smaller performance
gain. The improvement gained by using a geometric Lapla-
cian instead of a combinatorial Laplacian also gets smaller
in such case, since the two become more similar.

We have also briefly revisited the problem of encoding of
texture connectivity, providing an analysis that shows that
the simple scheme of encoding one bit per edge outperforms
the vertex-bit based algorithms.

All of the proposed lossy compression schemes may lead
to triangle flip-overs in case of very low bitrates. As future
work, we would like to add removal of such artifacts by lo-
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Figure 9: Performance of MV Laplacian based encoding in
dependence on the number of anchors, using the MV Lapla-
cian to encode the Fiery model. Similar results were ob-
tained for other datasets as well.

cally recomputing the parameterization using the mean value
mesh Laplacian, which guarantees an overlap-free mapping.
More generally, we would like to test different methods of
evaluating the distortion caused by compression of texture
coordinates. In particular, we would like to apply perceptual
metrics on the images rendered using the distorted texture
coordinates. We assume that the results may get different, es-
pecially regarding the relative performance of traversal and
Laplacian based encoding.

We would also like to test the proposed methods for the
task of encoding other vertex- or corner- based mesh prop-
erties, such as normals, colors and others. We assume that
the proposed improvements will bring a performance gain
in such cases as well, rigorous tests however have to be per-
formed in order to confirm such assumption.
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