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L. Váša, G. Brunnett

Technical University Chemnitz, Chemnitz, Germany

Abstract
Lossy compression of motion capture data can alleviate the problems of efficient storage and transmission by
exploiting the redundancy and the superfluous precision of the data. When considering the acceptable amount of
distortion, perceptual issues have to be taken into account. Current state of the art methods reduce the data rate
required for high quality storage of motion capture data using various techniques. Most of them, however, do not
use the common tools of general data compression, such as the method of Lagrange multipliers, and thus they
obtain sub-optimal results, making it difficult to do a fair comparison of their performance.
In this paper, we present a general preprocessing step based on Lagrange multipliers, which allows to rigorously
adjust the precision in each of the degrees of freedom of the input data according to the amount of influence
the given degree of freedom has on the overall distortion. We then present a simple compression method based
on Principal Component Analysis, which in combination with the proposed preprocessing achieves significantly
better results than current state of the art methods. It allows optimization with respect to various distortion metrics,
and we discuss the choice of the metric in two common but distinct scenarios, proposing a perceptually oriented
comparison metric based on the relation of the problem at hand to the problem of compression of dynamic meshes.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Animation Image Processing and Computer Vision [I.4.2]: Compression (Coding)—
Approximate methods;

1. Introduction

Motion capture (mocap) data are routinely used in a number
of CG applications, such as computer gaming or in film in-
dustry. Current industrial motion capture systems are mature
and allow precise acquisition of the high number of degrees
of freedom (DOFs) associated with a humanoid figure mo-
tion. In current practice, data of 40-120 DOFs are usually
used, which in combination with high sampling rates (com-
monly 120Hz) results in high storage and transmission costs.
As the capabilities of motion capture systems improve, it is
expected that these costs will even increase in the future.

Despite the recent improvements, the accuracy of mo-
tion capture systems remains limited, and for practical pur-
poses, it is not even necessary to improve it beyond the lim-
its of precision perceivable by a human observer, unless a
high precision is required for tasks such as computerized er-
gonomic evaluation. A compression method that ignores the
superfluous precision is essentially lossy, although lossless
from the perception point of view. Additionally, a large sub-
set of applications allow for a perceivable alteration of the

data, as long as the perceptual quality and semantic meaning
of the data is preserved. These observations can be exploited
to alleviate the problem of efficient transmission and storage
of mocap data by applying a lossy compression.

Current methods of lossy compression of mocap data al-
ready use the concepts sketched above. Various sophisticated
approaches are used to express the data using a low num-
ber of bits. However, particularly the problem of preserv-
ing the perceptual quality of the data remains an open issue,
mainly because of the lack of a perception correlated distor-
tion metric. Several metrics have been proposed, focusing
on different aspects of human perception, however a gen-
eral consensus on a proper metric has not been reached yet.
Additionally, researchers have proposed a number of com-
pression techniques, some of which are mocap data specific,
while others are more general (for example using a different
entropy coding), and it is thus difficult to comprehend the
relative efficiency of the approaches proposed so far.

In this paper, we propose a simple lossy compression
method based on Principal Component Analysis (PCA). Our
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method employs an approach that is simpler than some of the
recently proposed ones; however, by including general com-
pression tools, such as entropy coding of residuals and the
method of Lagrange multipliers for rate-distortion optimiza-
tion, we achieve results that are much better than the ones
reported by the current state of the art methods. By publish-
ing the implementation of the method, we hope to provide a
solid baseline method for future research in this field.

The concepts used in our method allow for optimization
against various error metrics. We present the results opti-
mized for minimal distortion of joint positions (which is a
non-perceptual metric used by many papers on mocap data
compression) and on a perceptual metric derived from the
Spatio-Temporal Edge Difference (STED) [VS11] percep-
tual metric, which has been recently proposed for the pur-
poses of evaluating distortion in dynamic meshes.

We have compared the performance of our method against
the state of the art approaches. Our approach provides distor-
tions that are about 50% lower than the ones provided by the
state of the art, at the same data rates.

The rest of the paper is organized as follows: In section
2 we give a brief overview of related research. In section 3
we describe our compression scheme based on PCA and La-
grange multipliers. Section 4 provides details on the two dis-
tortion metrics used, of which one is being newly proposed.
Results and comparison against the state of the art are shown
in section 5, and finally conclusions are drawn in section 6.

2. Related work

The problem of compression of motion capture data be-
came a major focus point of researchers since roughly 2005,
mainly because of fast evolution of mocap capture technol-
ogy at that time, and its ever growing applications in games
and film industry since.

One of the first papers on mocap data compression has
been published by Arikan [Ari06]. The method is based on
representing the data in the form of virtual markers, one for
each joint. The method than approximates the trajectories
of these markers by splines, which ensures that the decom-
pressed data are going to be smooth, and thus perceptually
more natural. Arikan compares his method, among others,
against a baseline method based on PCA. The discussion,
however, seems insufficient, since he does not discuss key
issues, such as quantization of PCA basis and coefficients,
focusing solely on the number of preserved degrees of free-
dom.

A PCA method has been proposed by Liu and McMillan
[LM06]. Their approach is based on motion segmentation
and interpolation of PCA coefficients using temporal splines.

The work by Chattopadhyay et al. [CBL07] identifies the
need for optimization of parameters that influence the com-
pression. In their indexing based algorithm, they resort to
exhaustive search for finding the optimal configuration.

Wavelet based compression has been proposed by Beau-
doin et al. [BPvdP07]. The key idea of their algorithm is
to adjust the compression parameters to the relative impor-
tances of the separate DOFs. In their approach, the compres-
sion parameters are set using a stochastic process similar to
simulated annealing. In contrast to that, we evaluate the rel-
ative importances of the DOFs directly.

A method based on dimensionality reduction using Prin-
cipal Geodesics Analysis (PGA) has been presented by
Tournier et al. [TWC∗09]. His method works directly in the
space of angles, and the space is described in terms of prin-
cipal geodesics. The positions of end effectors are encoded
directly, and the remaining DOFs are optimized using an IK-
like solver in the space of principal geodesics.

Temporal redundancy in the data, i.e. repeating motion,
is explicitly exploited by some of the algorithms, such as
the one proposed by Beaudoin et al. [BCvdPP08]. Recently,
Lin et al. [LPLT11] has proposed an algorithm based on re-
peated motion analysis, PCA and representation of data by
Catmull-Rom splines. Their method currently provides the
best rate-distortion ratios, at the cost of a rather complex im-
plementation.

Perceptual issues have been brought to attention again in
the work of Firouzmanesh et al. [FCB11]. Their method is
based on wavelet decomposition, and they have performed
a series of experiments with users evaluating the quality of
the decompressed meshes. Unfortunately, these experiments
only involved skeletal motions without skin mesh (stick fig-
ures), i.e. no realistic conditions were used. The data from
their experiments are moreover not publicly available, and
thus they cannot be used to construct a perception correlated
metric.

In absence of a perceptually correlated distortion metric,
most researchers use some derivative of mean squared error
applied onto joint positions, such as the KG error [KG04].
At the same time, since the pioneering work of Arikan, re-
searchers agree that such measure does not capture well
the amount of perceived distortion. Nevertheless, no per-
ception correlated metric has been proposed so far, and the
few subjective experiments performed so far were conducted
with the purpose of evaluating one particular compression
method.

Visible artifacts are among others often identified around
the so-called "contacts", i.e. in areas where the figure touches
some static object. In such areas, the data are usually not
smooth, and since many of the compression methods essen-
tially remove high frequencies, it is possible that the data be-
come visibly distorted in such areas. One particularly well
known problem of this kind is the foot skating, i.e. move-
ment of feet that are in fact supposed to be in contact with
the ground and thus static. Some compression algorithms
attempt to address this issue explicitly by identifying such
contacts and sending additional information. On the other
hand, the problem of foot skating removal has been studied
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also from the point of view of motion retargeting and mo-
tion synthesis [ZRB10, AF02], and it has been addressed by
specialised algorithms, such as [IAF06] or [PHO11]. In our
proposed algorithm, we do not resolve these issues explic-
itly, and leave it to the user to choose a relevant foot-skate
removal procedure.

The amount of distortion caused by compression of mo-
cap data in fact manifests itself as distortion of a sequence
of meshes which results from using the mocap data to an-
imate a rigged model. From this point of view, the evalua-
tion of distortion of mocap data is closely related to evalua-
tion of distortion in animated (dynamic) meshes, which has
been recently addressed by the STED algorithm by Váša and
Skala [VS11].

There are also other links to dynamic mesh compression.
Some mocap compression algorithms can be interpreted in
terms of compressing trajectories of vertices, which corre-
sponds to the Coddyac algorithm [VS07] proposed for com-
pression of dynamic meshes [MZP06]. The problem of com-
pressing basis of unevenly important basis trajectories (prin-
cipal components of the space of trajectories) also appears
in both fields [HYKL06]. This issue has been efficiently ad-
dressed by the COBRA algorithm [VS09], which can be in
fact interpreted in terms of the method of Lagrange multipli-
ers, which is used extensively in our proposal.

Most of the current state of the art algorithms use the gen-
eral tools of data compression, such as quantization and en-
tropy coding. Unfortunately, most of the time, the applica-
tion of these methods seems to be incomplete, which makes
it difficult to compare the results: sometimes, it is hard to
asses, whether the improved performance stems from the ac-
tual improved compression strategy, or from using a more
efficient entropy coder. Moreover, most of the state of the art
approaches do not employ rate-distortion optimization, and
the authors of the respective papers only report the results
for one particular level of distortion and one particular data
rate, instead of producing a full rate-distortion curve.

Our algorithm is easy to implement, yet its efficiency sur-
passes that of current state of the art. Our aim is to create
a proper reference method for future efforts, against which
future algorithms can be compared.

3. Method

The mocap data are usually represented by a skeleton struc-
ture and frame data. The skeleton structure defines the hier-
archy of bones, their rest position and the degrees of freedom
they have. The degrees of freedom are the values that change
in each frame. These are usually joint rotations (up to three
Euler angles are common) and joint translations, in the case
when bone lengths change in time (usually they do not, in
such case only the position of the root bone is specified in
the form of joint translation). The frame data then specify

all the degrees of freedom for each frame of the animation,
which represents the largest part of the data representation.

Lossy compression encodes the input data into a small
number of bits, from which an approximation of the input
can be reconstructed. The reconstruction should be as close
to the original as possible. Therefore, in order to construct
an efficient compression algorithm, it is necessary to define
an error metric, which evaluates the distortion of the recon-
struction with respect to the input. Having such metric, it is
possible to evaluate the performance of the compression al-
gorithm in the form of a rate-distortion chart. Such chart then
also allows to compare algorithms; however, the comparison
always depends on the choice of the distortion metric.

The interpretation of the data at hand implies, that the
separate degrees of freedom have a widely varying impact
on the resulting overall distortion. A simple example may
be an Euler angle of a bone that is located at the beginning
of the kinematic chain. A local distortion of such an angle
is reflected by distortion of positions of all joints that de-
scend from that bone, which leads to a large global error (if
the distortion metric in question measures discrepancies in
joint positions). On the other hand, an angle at the end of
the kinematic chain only affects one joint, and thus its dis-
tortion by the same amount causes a much lower global dis-
tortion. Our method takes this observation into account by
using the Lagrange equalization as a first step. This equal-
ization first analyses the influence of local distortion in each
of the DOFs with respect to a particular target metric, and
then it scales each DoF so that the global distortion is mini-
mized. Note that, apart from different scaling selected by the
equalization procedure, all the DOFs are treated equally in
our algorithm, including the data associated with root of the
kinematic chain.

Subsequently, we apply a sequence of mocap specific
steps - we apply PCA to find a subspace of common poses
in the input data, and then in a separate orthogonal PCA we
decorrelate the DOFs in small chunks of frames. PCA has al-
ready been discussed as a baseline method for compression
of mocap data in [Ari06], but only a very shallow discus-
sion was given to the aspects of encoding using this tool. In
our approach, we employ an advanced strategy for encoding
of basis vectors, which has been proposed for the purpose of
dynamic mesh compression. Finally, we encode the PCA co-
efficients using an entropy coder. The following subsections
give details on each of these steps.

3.1. Lagrange multiplier

As mentioned above, distortion to each of the DOFs causes a
different overall distortion, making some of the DOFs more
important than others. Using the same precision for each of
the DOFs is therefore suboptimal. Intuitively one should use
a higher precision for more important DOFs, while a lower
precision might suffice for DOFs that have a smaller impact
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on the overall error. The question at hand therefore is, how
does one steer the precision in the separate DoFs, so that
the performance is globally close to an optimum in the rate-
distortion sense.

This issue appears in many data compression applica-
tions, and it usually boils down to following constrained op-
timization problem: In a space of parameters q1,q2, ...,qn
(each influencing the precision in one of the DoFs), there
are two functions defined by the compression algorithm:
R(q1,q2, ...,qn) is the data rate for the given parameters,
and D(q1,q2, ...,qn) is the resulting distortion. The task is
to minimize D(q1,q2, ...,qn) under the condition that

R(q1,q2, ...,qn) = rt , (1)

for some given target rate rt . The method of Lagrange
multiplier yields a condition for the optimum grad(D) =
λgrad(R), which can be rewritten as

∂D
∂q1

∂R
∂q1

=

∂D
∂q2

∂R
∂q2

= ...=

∂D
∂qn

∂R
∂qn

= λ, (2)

which is also known as the principle of equal slopes [PV10].
Note that the intuitive justification of this condition is, that
if there was a different slope in a pair of parameters qi and
q j, then it would be possible to reach a configuration that
has the same rate and smaller distortion by increasing one of
these parameters and decreasing the other.

In our scenario, we have a rather complex compression
algorithm down the pipeline, however, with some simplify-
ing assumptions, we can improve the performance consider-
ably. Since the subsequent algorithm treats each of the DOFs
equally, we can influence the amount of error introduced (to-
gether with the resulting data rate) by selecting a weight wi
for each of the DOFs. The values of the i-th DOF will multi-
plied by wi before the compression, and this step is reverted
by multiplying the values by w−1

i after the decompression.
The weights wi now play the role of parameters qi in the
constrained optimization.

In order to evaluate the influence of the weights wi on the
data rate, we model the subsequent lossy compression of the
input values as truncating the data in binary representation
at a certain fixed position. Therefore, for example, multiply-
ing the data by 2 adds one additional bit that does not get
truncated, and therefore the data rate increases by one bit
per value. In general, the increase is log2(wi) bits per value.
Since each DoF is represented by the same number of values,
we can approximate the data rate by R = R0+b∑

n
i=1 log2wi,

where R0 and b are some unknown constants. Note that
this estimation is only important for estimating the gradient,
which is:

grad(R) = b(1/w1,1/w2, ...,1/wn). (3)

In order to find the weights wi, one also has to estimate gra-
dient of D. The partial derivatives of course strongly depend
on the used compression algorithm, and on the character of

error measure being used. We therefore propose following
numerical procedure for each DoF:

1. Add uniform noise of (small) standard deviation σs to
the i-th DOF of the original data (this simulates decreas-
ing the precision in the i-th DOF). We use 1/100 of the
standard deviation of each DoF as σs.

2. Evaluate the distortion value Di of the data with intro-
duced noise, using the target error measure.

Note that for the estimation, noise is always introduced to a
single DoF at the time. This allows us to estimate the partial
derivatives ∂D/∂σi = Di/σs. Since the data are first multi-
plied by wi, then a distortion, i.e. noise of some unknown
(yet constant) standard deviation k is introduced, and finally,
during the decompression, the data are divided by wi, to-
gether with the noise, we can estimate the standard deviation
of the resulting noise as σi = k/wi, where k is some unknown
constant. Therefore we get

∂D
∂wi

=
∂D
∂σi

∂σi
∂wi

=−Di

σs

k
w2

i
. (4)

This procedure yields an estimate of grad(D) =
−k/σs(D1/w2

1,D2/w2
2, ...,Dn/w2

n). Together with equa-
tion (3) and the condition of optimality, putting all the
constants into one, we get (D1/w2

1,D2/w2
2, ...,Dn/w2

n) =
λ(b/w1,b/w2, ...,b/wn), i.e.

w1 =
D1
λ
,w2 =

D2
λ
, ...,wn =

Dn

λ
. (5)

Intuitively, Di represents how sensitive is the error measure
to changes in i-th DOF. A higher sensitivity of a particu-
lar DOF naturally leads to a higher required wi, which in
turn reduces the amount of error introduced to that DOF.
This equation allows us to select an optimized weight for
each DOF, based only on a single parameter λ (the Lagrange
multiplier), which plays the role of a global quantization pa-
rameter, i.e. it allows controlling the amount of loss and thus
the size of the resulting file. In the following text, we will
refer to this procedure as Lagrangian equalization. Adjust-
ing the algorithm to a different error measure then results in
changing step 3 in the estimation of ∂D/∂wi.

The presented procedure is based on multiple estimations
that may not be accurate for all compression algorithms
and/or error measures. However, we have achieved a con-
siderable performance improvement (detailed in section 5)
for two error measures that will be presented in section 4,
using the compression algorithm described in the following
section.

3.2. Pose space PCA

Having F frames and N degrees of freedom (each of which
has been multiplied by the weight wi determined by the La-
grangian equalization), the data can be represented by F vec-
tors vi, i = 1..F of length N, each vector representing the
skeleton pose in one frame of the sequence. The character
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Figure 1: Schematic of the compression steps. Black rectangles represent matrices, the asterisk character (*) represents matrix
multiplication. The means vectors are omitted from the figure for clarity reasons.

of the data implies that the vectors are not randomly and in-
dependently distributed in the N-dimensional space: some
poses are likely, others unlikely, and also some poses are
combinations of others. This suggests that there exists a lin-
ear subspace (of dimension lower than N) of the full space
of poses that contains almost all the poses in the dataset.
PCA gives a simple end efficient way to identify the basis of
this space by eigenvalue decomposition of the autocorrela-
tion matrix.

We use all the frames of the input sequence to form the au-
tocorrelation matrix, and therefore the whole sequence must
be known in advance to the encoding algorithm. On-the-fly
encoding is therefore only possible using some buffer, which
processes the input data in batches. Note that this is a prop-
erty shared by most state of the art algorithms that focus
on rate-distortion efficiency, and in many applications this
poses no problem.

The PCA process yields a set of orthonormal basis vectors
(in fact poses) bi, i = 1..N, such that each original vector vi
can be expressed as

vi = v+
N

∑
j=1

b jc
j
i , (6)

where v stands for average of the input vectors vi. Apart
from being globally independent, the coefficient vectors ci
can also be ordered in order of the variance of the data in the
direction of the corresponding basis vector bi. Subsequently,
one can omit the coefficients that correspond to basis vec-
tors of low variance (the coefficients are going to be close to
zero anyway), preserving only K coefficients for each frame.
Having a rectangular matrix B = (b1,b2, ...,bK)

T , one can
compute the coefficients for each frame by

ci = B(vi−v). (7)

This process thus reduces the dimension of the data de-
scribing each frame from N to K, at the cost of omitting the
dimensions in which there is the lowest variation. The coef-
ficient vectors ci, i = 1..F , each of length K, are then passed
as input to the second step of the compression.

3.3. Temporal PCA

After the previous step, although projected onto a smaller
subspace, the vectors ci can still be interpreted as degrees of
freedom in i-th frame. The character of the data implies, that
in some parts of the sequences, there might be a strong corre-
lation between some of the DOFs (angles correlate with each
other), but this correlation may be different in different parts
of the sequence (arm movement is strongly correlated to leg
movement when walking, however they are not correlated at
all for some other actions).

These correlations should be exploited by the compres-
sion algorithm, so that the common part of the information is
not being transmitted multiple times with each of the DOFs.
In order to address the changes in correlation throughout the
sequence, we first divide the sequence into smaller chunks of
length L (in our implementation L is a user defined param-
eter of default value 120 frames, which usually corresponds
to one second of the data). The correlation is then going to be
analysed and exploited in each chunk separately. Although a
small C0 discontinuity may appear at chunk transitions, we
did not observe any such artifacts in our experiments.

PCA offers itself again as an efficient means of remov-
ing correlation, only this time we apply it orthogonally, i.e.
samples now correspond to temporal development of DOFs
in time within the given chunk. We are now working with
vectors c j = (c j

1,c
j
2, ...,c

j
L), j = 1..K. PCA finds a separate

decorrelated basis for each chunk, and the DOFs are ex-
pressed in this new basis. In this process, the basis vectors
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ti of length L can be interpreted as temporal 1-dimensional
trajectories, and the temporal development of each DOF is
expressed as a linear combination of these trajectories:

c j = c+
L

∑
i=1

tie
j
i , (8)

where c is the average of vectors c j in the given chunk.

In order to describe the data, one has to store the combina-
tion coefficients e j

i for each of the DOFs, and a given number
of basis trajectories ti, i = 1..Mk for each of the chunks. Note
that the number of preserved basis vectors is chosen differ-
ently for each of the chunks, because the motion complexity
can vary from chunk to chunk. In our implementation, the
user defines the maximum error caused by this dimension-
ality reduction, and the largest possible number of neglected
basis trajectories is selected so that this error is not surpassed
(error caused by removing a basis trajectory is estimated as
sum of magnitudes of coefficients associated with the given
basis vector). Figure 1 shows a schematic of the algorithm.

3.4. Encoding of bases

After the transformations, it is necessary to store the coef-
ficients ei and basis vectors ti for each of the chunks, and
the basis vectors bi, which represent the global basis of the
space of poses. It is of course not necessary to store these
numbers in full precision, thus quantization takes place. The
coefficients ei are quantized uniformly and encoded using
an entropy coder [MSB∗03], while a more elaborate quan-
tization strategy should be taken for the basis vectors. The
character of vectors ti is very similar to the character of ba-
sis trajectories used in dynamic mesh compression, and thus
they are well suited for compression using the COBRA al-
gorithm [VS09].

The key ideas of the COBRA algorithm can be again ex-
pressed in terms of Lagrange multipliers - the basis vec-
tors are not equally important, and thus their quantization
should be adjusted according to their importance. More-
over, the basis vectors can be interpreted as temporal (1D)
trajectories, and therefore temporal predictors can be used
to encode them efficiently. In our implementation, we have
added a temporal subsampling step, which allows achieving
a smooth reconstruction even from very low bitrates. The
procedure is very simple, we preserve only every s-th sam-
ple in each basis vector, where s is a user selected parameter,
which can be chosen rather high for 120-Hz datasets. In the
reconstruction, the missing samples are simply interpolated
from the four surrounding known samples (border values are
repeated where necessary), using a cubic polynomial inter-
polant.

For details on the COBRA algorithm we refer the reader
to the original paper. COBRA can be also applied to the basis
vectors bi, however, this time the temporal interpretation is
no longer possible and thus this step is omitted.

3.5. Algorithm configuration

There are several parameters of the algorithm, such as

• K, the number of preserved basis poses,
• P, the parameter influencing the number of preserved ba-

sis trajectories in each chunk, expressed as a fraction of
data variance to be maximally removed by dimensional-
ity reduction,

• Ql and Qg, the quantization parameters for local and
global PCA bases,

• λ the Lagrange multiplier which plays the role of quanti-
zation parameter for the PCA coefficients,

• s the stride in subsampling of local bases.

The overall performance depends on the interplay of these
parameters. If the optimal compression performance is re-
quired, then one can use a procedure similar to the one pre-
sented in [PV10] in order to find the optimal configuration.
Optimizing the parameters allows reaching virtually any de-
sired accuracy and bitrate, and thus we use it in our exper-
iments to produce results at bitrates comparable to the ones
achieved by competing algorithms.

The procedure requires running the compression algo-
rithm several times in order to optimize the configuration,
leading to asymmetric processing times, where compression
is significantly slower than decompression. Such asymmetry
is acceptable in scenarios where content is being prepared
for final delivery, similarly to video coding. On the other
hand, if the data are to be stored for further processing, a de-
fault configuration may be used, which may lead to slightly
suboptimal results in much shorter time. We have selected
the form of parameters in our implementation so that they
are as data-independent as possible. The default configura-
tion is part of our reference implementation of the algorithm.

4. Distortion evaluation

Lossy compression algorithms are always evaluated with re-
spect to a particular error measure, and ideally the algorithm
should be configurable to provide optimal results with re-
spect to an error metric of choice. This adjustability is in
our algorithm provided by the Lagrangian equalization step,
which estimates the influence of each DOF on the overall
distortion.

Similarly to image, video and audio compression, in com-
pression of mocap data it is possible to identify two main
scenarios where lossy encoding is used: First, for storage
of raw data intended for further processing, and second, for
storage of final product, intended for viewing by the final
consumer. These two scenarios have specific requirements
on the error measure used. In the raw storage, users usually
prefer encoding that has some guaranteed precision, usually
related to the accuracy of the input device. Perceptual issues
are usually not considered, because processing steps further
down the pipeline might alter the perceivability of artifacts.
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Although high accuracy is usually required, some precision
loss is usually allowed. Simple mathematical error measures,
such as Mean Error (ME), usually serve well in this scenario.

The second scenario, in which final product is being en-
coded for delivery to the consumer, has different require-
ments. The required precision is usually not specified in
terms of maximum spatial discrepancy, but in terms of per-
ceivability: any distortion that is not perceivable by a human
observer is usually allowed, and sometimes also some per-
ceivable, but not perceptually disturbing changes are allowed
as well. It is well known in the compression community, that
measuring the amount of perceived error is a complex task
which involves subjective experiments and either modelling
of human visual system, or attempting to mimic the results
of perception by a black box metric. At this point, there is
still no consensus on how to measure perceived error caused
by mocap data compression; however, it has been conclu-
sively demonstrated that metrics such as ME are not suited
for such task. In the following, we discuss the possibilities
for both raw and final scenarios.

4.1. Mean Error

ME is a metric used by many current mocap data com-
pression algorithms. It builds on the notion of representing
the mocap data by a skeleton structure consisting of joints,
which are connected with bones. It is straightforward to con-
vert the original and distorted mocap data into a set of joint
positions, p j

i , i = 1..F, j = 1..J and p̂ j
i , i = 1..F, j = 1..J re-

spectively, where J is the number of joints in the skeleton.
ME is then simply the mean distance between the original
and distorted positions:

ME =
1

FJ

F

∑
i=1

J

∑
j=1

√
(p j

i − p̂ j
i )

T (p j
i − p̂ j

i ) (9)
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Figure 2: Correlation of the STED and SkTED on the danc-
ing man dataset.
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Figure 3: Correlation of the STED and SkTED on the walk-
ing dataset.

4.2. Perceptual

The inadequacy of ME as measure of perceived distortion
has been already identified in the seminal work on mocap
data compression by Arikan [Ari06]. However, apart from
stating that ME correlates with perception poorly, only few
attempts were made to propose a better measure. The ques-
tion of proper way to measure distortion in the final scenario
is still open, and new measures are expected in the future.

Subjective experiments have been recently performed in
the context of mocap data compression by Firouzmanesh et
al. [FCB11]. In these experiments, animations of stick fig-
ures were shown to users, and the users evaluated the amount
of perceived distortion with respect to a known original mo-
tion. In our view, the fundamental problem of these experi-
ments is, that the users were evaluating the results in an ar-
tificial scenario, which does not occur in practice, where the
mocap data are always used for skinning animation of a sur-
face mesh. The users should therefore evaluate the distortion
of the final animated mesh instead of a stick figure.

Recently a perceptual metric STED (Spatio-temporal
Edge Difference [VS11]) has been proposed in the context
of compression of dynamic meshes, i.e. sequences of static
meshes, which represent a movement of a surface in time.
This metric provides a much higher correlation with human
perception, reaching Pearson correlation of more than 0.9.
In a typical scenario, mocap dataset is applied to animate a
mesh, using some set of animation weights, which can be
for example computed by the bone glow algorithm [WL08].
The result is a sequence of meshes of shared connectivity,
which exactly matches the input of the STED measure, thus
it seems that this metric could provide the first step towards
perceptual evaluation of mocap data distortion.

The STED metric consists of two terms, one focusing on
spatial distortion, and the other on temporal distortion. The
key concept behind the spatial term of the metric is that
humans perceive local, relative changes of vertex positions
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rather than the dislocation from original coordinates. There-
fore, the spatial term is computed from changes in edge
lengths rather than changes in absolute vertex positions.

The second term of the metric focuses on the so-called
temporal artifacts, which may appear in dynamic meshes
and cannot be detected by considering each frame separately.
Typically, smooth dislocation of all vertices is hard to per-
ceive, however, if the dislocation appears in different direc-
tions in subsequent frames, the users can clearly perceive the
"shaking" of the surface. This effect is particularly well visi-
ble in parts of the mesh that are static, or move slowly. In or-
der to capture these artifacts, it is therefore necessary to take
the vertex speed into account as well. The temporal term of
STED is computed in a way similar to the spatial term, only
this time considering virtual, temporal edges, which connect
each vertex position in two subsequent frames (in a sense,
these edges represent the vector speed of vertices). The dif-
ference of length of these edges is computed and normalized
using the inverse original speed of the vertex. The sum of
these edge length changes is used as the temporal term. The
overall error is computed as hypotenuse of the spatial and
temporal term. For more details on STED, see the original
paper [VS11].

The STED error measure can be applied directly, however,
there are some mocap data specific considerations, which
may simplify the computations considerably. First, the re-
sult depends on the mesh that is used for skinning, however,
one might want a metric that is mesh independent. Also, the
spatial term is probably going to be quite small in relation
to the temporal term, given that the animation weights are
smooth and the only source of distortion is the compression
of mocap data. We therefore propose a simplified version of
the STED error, denoted SkTED (Skeletal Temporal Edge
Difference) which is only based on the temporal term of the
STED error, and which is computed on the joint positions
only, thus it is mesh independent.

The SkTED measure is evaluated as follows: having the
total number of joints J and total number of frames F , we
convert the original and distorted mocap data into joint po-
sitions p f

i , i = 1..J, f = 1..F , and p̂ j
i , i = 1..J, j = 1..F re-

spectively. Next, the temporal edge lengths are computed:

tel f
i =

√
(p f

i −p f+1
i )T (p f

i −p f+1
i )+d2, (10)

where d is a constant representing the temporal distance be-
tween frames, which is used to avoid division by zero later

in the algorithm for the case of static vertices. Similarly, t̂el
j
i

is evaluated for the distorted joint positions. Vertex speed s f
v ,

at a given frame f , is computed as average of teln
v , where n

is in a given range of frames around the frame f . From these
values, temporal edge difference is computed as

ted f
i =
‖tel f

i − t̂el
f
i ‖

s f
i

. (11)

Finally, the SkTED is computed as average of ted f
i over all

frames and all vertices.

To justify the proposed simplification, we have performed
a set of experiments, which demonstrate the correlation of
the results of SkTED with the temporal part of STED applied
on a mesh skinned according to the compressed mocap data.
We have tested several kinds of distortion, including dimen-
sionality reduction, quantization of basis vectors and quan-
tization of coefficients, each at varying strength. We have
evaluated both STED (on the resulting dynamic mesh) and
SkTED (on the input mocap data) for each kind of distortion,
and we have evaluated the correlation of the two.

We have experimented with different motions, using a lin-
ear blend skinning method, and the results shown in figures 2
and 3 show that there is indeed a strong correlation between
temporal part of STED and the SkTED. The correlation is
very close to linear, as documented by the Pearson correla-
tion coefficient of >0.99 over all the experiments we have
performed. Another big advantage of SkTED over STED is,
that it is evaluated much faster - a speedup of about 200× has
been achieved with respect to STED applied on a skinned
animation of 58k vertices.

At this point, we do not have any direct experiment results
that would confirm the correlation of SkTED with percep-
tion, such experiments are beyond the scope of this work.
On the other hand, the good correlation of the STED mea-
sure has been confirmed by a set of subjective experiments,
and apart form the experiments with stick figures very lit-
tle work has been done in this direction. From this point of
view, SkTED may serve as an important first step in a search
for a proper error measure, since even though it is evaluated
on the skeleton structure only, its validity is related to ex-
periments with full 3D surfaces that were performed by the
authors of [VS11].

5. Results

We have tested our method on selected clips from the
Carnegie Mellon motion database, and we have compared
them with the current state of the art algorithms proposed
in [LPLT11] and [TWC∗09]. We have used both ME and
SkTED error metrics to demonstrate the results.

The results in table 1 show that our algorithm provides an
improvement of up to 86% with respect to the state of the art,
in terms of reduction of distortion at the same file size. These
results demonstrate, that the previous claims that PCA is not
suited well for compression of mocap data were not justified.
Table 2 shows the compression and decompression times for
some of the datasets, demonstrating a processing speed of up
to 3000 fps for encoding and 21000 fps for decoding. These
times were measured on a desktop machine with Intel Core
i7-920 CPU @ 2.67GHz.

The figures 4 and 5 show the rate-distortion diagrams
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Table 1: Comparison against the state of the art, all the file
sizes are in kB.

[LPLT11] proposed
dataset size ME size ME impr.
15_04 76.9 1.86 63.2 0.70 62.3%
17_08 26.7 1.58 25.4 0.70 52.3%
17_10 16.5 2.57 17.2 0.99 61.5%
85_12 23.1 5.02 24.2 1.87 62.8%

[LPLT11] proposed
dataset size SkTED size SkTED impr.
15_04 76.9 0.38 74.2 0.14 62.6%
17_08 26.7 0.45 26.0 0.27 39.9%
17_10 16.5 1.01 16.9 0.74 26.6%
85_12 23.1 1.40 24.1 0.75 46.2%

[TWC∗09] proposed
dataset size ME size ME impr.
15_04 127.8 2.12 124.4 0.29 86.4%
17_08 13.4 1.29 13.6 1.92 -49.0%
17_10 16.9 2.16 17.2 0.99 54.2%
85_12 14.3 6.26 14.8 3.71 40.7%

Table 2: Preprocessing, encoding and decoding times

frame prep. enc. dec. enc. dec.
count [s] [s] [s] [fps] [fps]

15_04 22549 15.4 8.64 1.05 2609 21445
17_08 6179 4.34 2.14 0.35 2886 17878
17_10 2783 1.92 0.98 0.18 2820 15529
85_12 4499 3.15 1.51 0.28 2982 16247

in terms of ME and SkTED errors. The figure shows that
the Lagrangian equalization (LE) is an essential step which
boosts the performance of our simple coding scheme. Also
the pose PCA (PPCA) and temporal PCA (TPCA) steps
bring a substantial improvement of performance and thus
cannot be omitted. The competing approaches are repre-
sented by single points, since they cannot be easily steered
to different data rates and distortions (their parameters are
fixed). Note that we are not showing the results of the
[Ari06] algorithm, since they lie off the charts and are al-
ready largely outperformed by the state of the art. Finally, an
example of the difference between decompressed skeletons
at roughly comparable data rates is shown in figure 6.

We provide a reference implementation of our compres-
sion algorithm which can be used for benchmarking of fu-
ture proposals. The implementation allows changing the er-
ror metric easily, so that the results can be optimized to ex-
isting metrics, as well as to metrics that are going to be pro-
posed in the future. The implementation can be downloaded
at http://www.tu-chemnitz.de/informatik/GDV/.
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Figure 4: Rate-distortion chart for the 17_10 dataset.
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6. Conclusions and future work

Our contribution to the field is threefold:

• We propose an automated tool for perceptual evaluation of
distortion introduced to mocap data SkTED, based on the
observed connection with dynamic meshes. Although the
measure only works with the skeletal structure, its validity
is supported by user studies with surface meshes.

• We propose a Lagrange equalization method, which al-
lows adjusting the amount of error introduced to each of
the DOFs.

• We propose a simple, fast and efficient algorithm based on
PCA, which improves the performance of motion capture
data compression well beyond the current state of the art.

Our algorithm is efficient and it can be configured to provide
any desired accuracy.

At current stage, our algorithm outperforms the state of
the art algorithms, which are based on different general
methods. In most of the competing methods, it is possible
to include Lagrangian optimization using a procedure simi-
lar to the one described here, possibly obtaining an improve-
ment of the results. Whether or not including Lagrangian
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worst improvement best improvement

[LPLT11] proposed [LPLT11] proposed

Figure 6: Comparison of compression results. The original
data are shown in green, decompressed in red, on two frames
from the 17_08 sequence, the one where the proposed algo-
rithm provided the worst (left) and best (right) improvement
with respect to [LPLT11].

optimization into these methods improves their performance
over our proposed approach is a question for future research.

Another interesting question is the practical validation of
our SkTED error measure by a subjective experiment. Such
experiment should include results of various mocap data pro-
cessing methods, and it probably should also take into ac-
count varying meshes that can be used with the same mocap
data. We plan to design such experiment in the future.
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