

Efficient encoding of texture coordinates guided by mesh geometry

Libor Váša Guido Brunnett

Symposium on Geometry Processing 2014, Cardiff

Task: Texture coordinates compression

- Texturing = parameterization of the surface
 - UV coordinates associated with each corner
 - Usually the same for all corners of a vertex (except for crease edges)
- Mesh connectivity + geometry already transmitted
- □ Encoding of texture connectivity
- Lossy encoding of texture geometry

Mesh parameterization

Texture connectivity

4

- Closely related to mesh connectivity
- Mostly derived by a series of cuts
 - □ => encoding: 1 bit per edge (cut or not)
- Better theoretical performance than other approaches, such as vertex bits etc.
- Lacks support for some unlikely/unwanted phenomena, such as
 - Welding of triangles that were not connected in mesh
 - Non-manifold texture connectivity

Data compression: prediction

5

"What can be guessed does not have to be transmitted"

Compression of mesh geometry

6

Paralelogram predictor

O' = L + R - B

[Touma & Gotsman, 1998]

Weighted parallelogram predictor

7

B

Need more freedom

$$O' = w_1 L + w_2 R + (1 - w_1 - w_2) B$$
$$O' - B = w_1 (L - B) + w_2 (R - B)$$

 $w_2 = \frac{\cot \delta + \cot \beta}{\cot \delta + \cot \gamma}$ $w_1 = \frac{\cot \alpha + \cot \gamma}{\cot \delta + \cot \gamma}$ O' $\beta \delta$ α R

 $\delta' = \beta' = \frac{2\pi}{d_L}$ $\alpha' = \gamma' = \frac{2\pi}{d_R}$

[Váša & Brunnett 2013]

WPP for texture coordinates

- 8
- Mesh geometry already transmitted
- □ Each texture triangle has a corresponding mesh triangle
- Assumption parameterization is at least partially conformal

=> use angles from mesh geometry as prediction of angles in texture geometry

Laplacian coding of mesh geometry

9

Predictor for mesh encoding

$$p'_i = \frac{1}{|N(i)|} \sum_{j \in N(i)} p_j$$

Residual:

$$r_i = p'_i - p_i = \frac{1}{|N(i)|} \sum_{j \in N(i)} (p_j - p_i)$$

[Sorkine et. al., 2003]

Laplacian coding of texture coordinates

$$\mathbf{r} = L^* \mathbf{p} \qquad \hat{\mathbf{p}} = L^{*-1} \hat{\mathbf{r}}$$

Use a geometric Laplacian instead of combinatorial
Mean value Laplacian, cotan Laplacian ...
Weights make the prediction more accurate

Angles/edge lengths from mesh
Normalize angles (inner vertex sum = 2π, border sum=π)

Structure (neighbourhoods) from texture connectivity
Crease edges

Results

Reduced entropy of residuals

Lower data rate at the same distortion

Lower distortion at the same data rate

Results

- Laplacian encoding
 - Slower (solving a sparse linear system at decoder)
 - More efficient for low bitrates
 - Distortion visible on crease edges
- Weighted parallelogram
 - Small slowdown with respect to pure paralellogram
 - Distortion more uniformly distributed

Typical result – DAZ dataset

data rate [bpv]

Various parameterizations

14

				Weighted			
model	parameterization	RMSE	Parallelogram	prediction	Tutte	Cotan	MV
Horse	ABF	0,0015	2,77	2,59	8,47	2,00	2,12
		0,0001	6,33	2,95	16,57	4,87	6,30
	ABF++	0,0015	2,80	2,53	9,05	2,01	2,13
		0,0001	6,37	2,99	16,63	4,83	6,25
	DPBF	0,0015	2,77	2,55	8,05	2,87	2,63
		0,0001	6,45	3,23	16,70	9,66	10,13
	LSCM	0,0015	2,86	2,63	9,30	2,69	2,63
		0,0001	6,48	2,99	18,04	6,02	7,33
	HLSCM	0,0015	2,82	2,61	9,31	2,70	2,63
		0,0001	6,48	2,99	18,05	5,42	7,32
Victoria	manual	0,0008	7,47	4,83	12,48	9,63	9,58
		0,0001	13,74	9,49	19,84	16,28	15,73

Data rates [bpv]

Conclusion

- Specialized algorithms proposed for texture coordinates compression
- Mesh geometry can be efficiently exploited for more efficient compression of texture geometry
- Parallelogram prediction and Laplacian based coding can be extended

Thank you

http://www.tu-chemnitz.de/informatik/GDV/

Efficient encoding of texture coordinates guided by mesh geometry

Libor Váša Guido Brunnett

