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A Perception Correlated Comparison Method
for Dynamic Meshes

Libor Vasa and Vaclav Skala, Member, IEEE

Abstract—There are multiple areas of computer graphics where triangular meshes are being altered in order to reduce their size or
complexity, while attempting to preserve the original shape of the mesh as closely as possible. Recently, this area of research has
been extended to cover even a dynamic case, i.e., surface animations which are compressed and simplified. However, to date very
little effort has been made to develop methods for evaluating the results, namely the amount of distortion introduced by the processing.
Even the most sophisticated compression methods use distortion evaluation by some kind of mean squared error while the actual
relevance of such measure has not been verified so far. In this paper, we point out some serious drawbacks of the existing error
measures. We present results of the subjective testing that we have performed, and we derive a new measure called Spatiotemporal
edge difference (STED) which is shown to provide much better correlation with subjective opinions on mesh distortion.

Index Terms—Animation, distortion, evaluation, error, measure, discrepancy, dynamic mesh.

1 INTRODUCTION

OR about 20 years, we have seen attempts to reduce the

memory requirements of triangular meshes based on
sophisticated encoding or simplification of surface meshes.
These efforts do not lose their value with increasing
availability of high performance hardware, because it is
always useful to be able to store and transmit more detailed
models. On the other hand, it had been the increase of
processing power of current hardware that recently enabled
the extension of the original static mesh compression
problem to the more computationally demanding dynamic
case, i.e., the compression of surface animations.

Most of the techniques for both static and dynamic mesh
compression presented so far are lossy, i.e., the decom-
pressed data is slightly different from the original data. The
goal of lossy compression is to achieve the best possible
rate/distortion ratio, i.e., we want to obtain a mesh which
can be stored in a low number of bits, and at the same time,
we want to preserve some property of the mesh (low
distortion). Quite surprisingly, there has been only very
little effort invested into the evaluation techniques. Most of
the papers simply use the mean squared error (MSE), or
some of its derivatives. This might seem sufficient, because
the MSE behaves intuitively in cases such as adding
Gaussian error with growing deviation (the MSE grows as
well) or adding sinusoidal error with growing amplitude
(the MSE again grows).

However, as soon as we start adding different kinds of
distortion, the MSE fails completely. It is unable to
distinguish between smooth error (neighboring vertices
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shifted by similar amount and in similar direction) and
random error (neighboring vertices shifted by a random
amount in random directions), even though intuitively
there is a big perceptual difference between these two. Such
situation is actually very common in practical compression
and processing tasks, where usually multiple parameters
control the quality of the result (roughness of quantization,
number of basis vectors used for PCA based schemes, etc.),
however, each parameter may introduce an error of
different character. These parameters are usually set by
some kind of rate/distortion optimization, and it is there-
fore, essential to have an error measure which accurately
measures the property of the processed which we want to
preserve. MSE works well only as long as the property
being preserved is “vertices located near their original
location,” however, we will show that “visual similarity
with the original” is a different property and it should be
therefore evaluated by a different measure.

In the next section, we will show the mesh comparison
methods used so far, identifying the same problems for all
of them. Motivated by this insufficiency, we had performed
a series of subjective experiments which showed that the
correlation of the MSE (and other measures) with subjective
distortion perception is only very limited. Based on the
results, we have designed a new measure, the STED error,
which will be described and configured to fit the subjective
testing results. Finally, we will show that the STED measure
had predicted some counterintuitive phenomena which
were confirmed by our final subjective experiment.

2 UseD NOTATION

Throughout the rest of the paper, we will be using
following symbols:

e [ stands for the total number of frames of the
animation.

e V stands for the number of vertices in each frame.

e T stands for the number of triangles in each frame.
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° vif stands for a three component vector of XYZ
coordinates of the ith vertex in the fth frame.
° rvzf stands for the X coordinate of the ith vertex in

the fth frame.

e Overline denotes values or functions of a distorted
version of the dynamic mesh, i.e., v/ stands for a
three component vector of XYZ coordinates of the ith
vertex in the fth frame of a distorted dynamic mesh.

3 STATE OF THE ART

Although dynamic mesh compression has been thoroughly
investigated only recently, there are already countless
methods starting probably from Lengyel [1], through
Dynapack by Ibarria and Rossignac [2] up to recent
advances such as the Scalable encoder by Stefanoski et al.
[3], the Coddyac scheme by Vésa and Skala [4], [5], [6], and
the new MPEG standard, the FAMC algorithm [7]. There is
no point in going into detail about these methods. All we
need to know is that they produce a decompressed mesh
which is a modified version of the original. We will focus on
the methods used to evaluate the amount of distortion. The
most intuitive, and also widely used method is the MSE. It
can be applied to the cases when the connectivity has not
been changed, i.e., when we know that each original vertex
v; corresponds to a decompressed vertex ;. The error is a
simple sum of squares of the deviations over the total
number V of vertices:

<

MSE = — Z lv; = Bill) (1)

i=1

Some papers dealing with dynamic mesh compression,
[8], [9], [10], simply show the MSE for each of the F frames
in a graph, others choose to sum or average the MSE values.
Karni and Gotsman [11] have proposed to perform a
different measurement which has been later adopted by
multiple papers, [12], [13], [3], and which is known as the
KG error. They suggest to reform the dynamic mesh into a
matrix A of size 3V x F' where each row represents the
temporal development of one coordinate of one vertex, and
therefore, each column represents one frame of the
animation. Similarly, the decompressed animation is repre-
sented by matrix A, and the error is expressed as:

A - A

KGerrm’: —7
A= E(A)]

100 * (2)
where ||.|| denotes Frobenius norm, E(A) is a matrix of size
3V x F, which is computed from the matrix A by replacing
the values in each column with the mean value of the given
coordinate in the given column. The denominator term
ensures that the value of KG error is unchanged when the
data set is uniformly scaled.

Some authors prefer to use the sophisticated Hausdorff
distance measure. This is basically a “largest smallest
distance,” i.e., the algorithm searches for a point which is
most distant from the other surface. Since this point may be
located anywhere on the surface (not only at the mesh
vertices), the error is usually approximated by sampling,
using some advanced speedup techniques like those
presented in the implementations Metro [14] and Mesh
[15]. Again, the measure does not take into account the
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Fig. 1. Straight and twisted trapezoids used in the evaluation of the D,
error.

actual error distribution, and it must be extended to cover
the case of dynamic meshes, by using averaging or so-called
Root Mean Squared Error (RMSE; used by Mamou [16]),
which is a root of squared Hausdorff distances for each
frame (this definition of RMSE follows from the Metro tool,
and it is often misinterpreted as square root of MSE, which
is also sometimes used as an error measure).

Another often used method for dynamic mesh compar-
ison is the D4 error, also known as the ribbon error, which
has been introduced in [17] and used by [18], [19]. This
measure focuses on the virtual ribbons created by the error
vector over time. It works with each coordinate separately,
and expresses the error as a sum of areas of the straight or
twisted ribbons.

For the nontwisted case, the area of a ribbon can be
computed as an area of a trapezoid (see Fig. 1):

D(a, b, h) :%(a—l— b) . 3)

A slightly more complex version is required in the case
of a twisted ribbon:

a® + b?
——xh
2(a+ D)

The algorithm computes the areas of ribbons formed by
the original and distorted positions of each coordinate of
each vertex between two subsequent frames, and subse-
quently averages the ribbon areas over all the vertices and
all the frames. For the X coordinate values, we can write:

D(a,b,h) = (4)

F-1

|4
ZD |Iv _lvf| |xvf+]
f=11i=1

—.vl,1/25).  (5)

The algorithm is scale-invariant by incorporating a
constant W equal to the largest span of coordinate values
over the length of the animation:
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With the constant 1V, we can express the Dy error as:

Dx + Dy + Dy
Dy=—7—77"-. 7
4 3WF @)
This measure does reflect the temporal behavior of the

mesh. However, it is intuitively inverse to what one would
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expect. If the error oscillates, then the measure yields smaller
values than in the case of a constant direction error.
Moreover, since the coordinates are processed separately,
we get different error values for a rotated version of the
model. In other words, if we simply rotated both original and
decompressed models, then we would get different error
measure values, which is certainly an unexpected behaviour.

A slightly different point of view is taken in the work of
Mathur et al. [20]. In their paper, they attempt to obtain a
measure of importance of vertices in an animation, which
can be used later during compression to locally steer the
quantization. Their assumption is that vertices of higher
change in curvature are more important, and thus should be
quantized more accurately. Their other criterion is based on
the knowledge of animation skeleton, which is generally not
guaranteed. However, in order to evaluate their results,
they use a variation of the PSNR error metric.

To sum up, we see the following serious drawbacks of
the presented error measure methods:

1. Some of the methods are not rotation invariant, i.e.,
if we rotate both original and decompressed meshes,
we get different results.

2. None of the methods has been tested to correlate
with perceptual quality.

3. None of the methods captures the character of the
introduced error, i.e. difference between random
and smooth distortion.

4. None of the methods even attempts to capture
spatial artifacts, with exception of ribbon measure,
which actually favors(!) oscillating vertices.

4 PERFORMED SUBJECTIVE TESTING

We have performed a series of subjective tests in order to
approve/disapprove the relation of various measures to
subjective evaluation of distortion amount. In order to do
so, we have prepared multiple distorted versions of some of
the available data sets, using random (1-6), smooth (7-9) and
real-world (10-13) distortions:

1. Gaussiannoise added to vertex positions (noises with
various deviations have been used). Different values
were generated for each vertex and each frame.

2. Gaussian noise added to vertex positions. One
random distortion vector was generated for each
vertex, used in all the frames.

3. Gaussian noise added to vertex positions. One
random distortion vector was generated for each
frame, used for all the vertices in the frame (i.e., each
frame has been shifted by a random amount).

4. Gaussian noise added to vertex positions, random
values generated for each vertex and each frame,
noise deviation selected for each vertex according to
the length of the edges incident with the given vertex
(vertices with shorter edges had smaller noise
deviation).

5. Gaussian noise added to vertex positions, random
values generated for each vertex and each frame,
noise deviation selected for each vertex according to
the speed of the movement of the given vertex (slow
moving vertices had smaller noise deviation).

TABLE 1
Used Distortions
dataset | chicken | dance | cloth | mocap
A 11 2 2 10
B 1 3 10 12
C 11 1 3 13
D 2 10 9 6
E 11 2 1 13
F 5 11 10 12
G 1 11 5 13
H 8 4 9 6
1 7 4 8 11

6. Uniformly distributed random value added to vertex
positions. Different values generated for each vertex
and each frame.

7. Value Asin(,v/w) added to each coordinate of each
vertex, i.e.,, a smooth distortion of amplitude A and
frequency w.

8. Value Asin(fw) added to each coordinate of each
vertex, i.e., a smooth temporal shifting of the whole
mesh.

9. Value Asin(wv{ w) added to each coordinate of each
vertex, i.e.,, a smooth distortion of amplitude A and
frequency w. The amplitude A has been selected for
each vertex according to the speed of the movement
of the given vertex (slow moving vertices had
smaller distortion amplitude).

10. Result of the compression scheme Coddyac using a
coarse quantization.

11. Result of the compression scheme Coddyac using a
low number of basis trajectories.

12. Result of the Dynapack [2] compression scheme.

13. Result of the compression scheme by Alexa and
Miiller [21].

This way, we have achieved distortions of varying nature.
We have prepared a set of nine distorted versions of the data
sets, namely, chicken (artificial sequence, 3,030 vertices,
400 frames), dance (artificial humanoid sequence, 7,061 ver-
tices, 201 frames), falling cloth (created by a garment
simulation in Autodesk 3ds Max, 9,987 vertices, 200 frames)
and mocap dance (created by applying mocap data onto a
figure in eFrontier Poser 7.0, 14,409 vertices, 263 frames),
giving together 40 data sets (including the originals). The
details of the distortion types used are listed in Table 1.

In each test, a set of versions of a data set has been shown
to a group of subjective evaluators. The evaluation took
place in a computer laboratory with a projection screen and
10 computers. One computer at the front of the lab and its
associated projection screen was playing the original
version of the animation, while each computer played back
one of the nine distorted versions. Such approach is
equivalent to the multiple-stimulus testing technique with
known gold standard which had been previously success-
fully applied on subjective testing of audio recordings [22].

The displays we have used were identical 19” LCD
screens, including the one playing the original sequence.
The projection screen has only been used for quick
reference, the users could view the original sequence on
an identical display at any time.
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TABLE 2
Correlations

chicken (43 subjects)

A B C D E F G H 1 | Pearson | Spearman

MOS | 777 | 9.84 | 1.63 | 7.70 | 2.16 | 6.30 | 6.64 | 0.95 | 1.79

Std. deviation | 1.73 | 043 | 1.63 | 1.88 | 2.09 | 2.19 | 2.01 | 1.17 | 1.65

95% confidence interval | 0.52 | 0.13 | 0.49 | 0.56 | 0.63 | 0.65 | 0.60 | 0.35 | 0.49
KGerror | 219 | 1.86 | 1.86 | 1.85 | 2.95 | 1.79 | 0.93 | 3.95 | 1.83 -0.53 -0.23
Ribbon mean x10% | 338 | 256 | 2.19 | 3.13 | 354 | 1.67 | 1.28 | 7.56 | 3.45 -0.49 -0.37
Ribbon peak x10%7 | 0.45 | 021 | 091 | 0.16 | 1.11 | 0.50 | 0.10 | 0.12 | 0.06 -0.33 0.02
Hausdorff x10% | 1.04 | 0.94 | 1.35 | 0.96 | 2.25 | 0.67 | 0.48 | 0.88 | 0.61 -0.32 0.02
RMS x10% | 1.70 | 1.57 | 1.89 | 1.56 | 3.11 | 091 | 0.85 | 415 | 2.13 -0.69 -0.63

dance (43 subjects)

A B C D E F G H 1 | Pearson | Spearman

MOS | 893 | 195 | 358 | 674 | 9.56 | 1.88 | 2.02 | 7.95 | 6.35

Std. deviation | 1.05 | 1.73 | 1.80 | 1.57 | 0.96 | 1.90 | 1.66 | 1.68 | 1.92

95% confidence interval | 0.31 | 0.52 | 0.54 | 047 | 0.29 | 0.57 | 0.50 | 0.50 | 0.57
KGerror | 048 | 653 | 023 | 048 | 0.61 | 049 | 2.73 | 046 | 0.28 -0.54 -0.24
Ribbon mean x10% | 0.53 | 5.86 | 0.20 | 043 | 0.64 | 044 | 254 | 0.46 | 0.28 -0.53 -0.02
Ribbon peak x10° | 028 [ 3.12 [ 0.16 | 033 | 0.61 | 0.67 | 5.23 | 0.38 | 0.20 -0.60 -0.40
Hausdorff x10% | 0.28 | 1.56 | 0.13 | 0.28 | 0.40 | 042 | 2.90 | 0.38 | 0.22 -0.56 -0.36
RMS x10% | 051 | 856 | 0.24 | 051 | 0.71 | 0.71 | 412 | 057 | 0.35 -0.57 -0.30

falling cloth (37 subjects)

A B C D E F G H 1 | Pearson | Spearman

MOS | 924 | 786 | 222 | 1.32 | 2.73 | 878 | 6.00 | 246 | 2.32

Std. deviation | 128 | 1.32 | 1.98 | 1.23 | 1.72 | 147 | 147 | 2.00 | 1.84

95% confidence interval | 0.41 | 042 | 0.63 | 0.39 | 0.55 | 047 | 047 | 0.63 | 0.59
KG error | 034 | 0.26 | 0.21 | 0.23 | 2.02 | 0.21 | 0.21 | 0.65 | 0.22 -0.27 0.14
Ribbon mean x10% | 1.89 | 1.34 | 1.06 | 0.88 | 8.19 | 1.02 | 0.61 | 2.51 | 1.49 -0.24 0.13
Ribbon peak x10% | 0.16 | 029 | 0.06 | 0.16 | 3.31 | 0.09 | 041 | 1.17 | 0.02 -0.29 0.20
Hausdorff x10% | 023 | 0.21 | 0.04 | 0.15 | 2.03 | 0.11 | 0.20 | 0.74 | 0.04 -0.26 0.36
RMS x10% | 038 | 029 | 0.26 | 0.19 | 220 | 0.20 | 0.13 | 0.75 | 0.27 -0.28 0.20

mocap dance (49 subjects)

A B C D E F G H 1 | Pearson | Spearman

MOS | 9.64 | 536 | 3.42 | 860 | 232 | 882 | 1.74 | 5.62 | 1.10

Std. deviation | 0.83 | 1.70 | 2.65 | 1.44 | 1.96 | 128 | 1.60 | 1.34 | 1.40

95% confidence interval | 023 | 047 | 0.74 | 040 | 0.54 | 0.35 | 0.44 | 0.37 | 0.39
KGerror | 048 | 023 | 205 | 048 | 1.03 | 046 | 051 | 0.24 | 0.55 -0.34 -0.50
Ribbon mean x10% | 0.55 | 025 | 2.52 | 055 | 1.24 | 0.51 | 0.60 | 0.28 | 0.59 -0.33 -0.49
Ribbon peak x102 | 0.14 | 0.07 | 2.80 | 0.14 | 1.57 | 0.14 | 0.77 | 0.07 | 1.16 -0.62 -0.53
Hausdorff x10% | 0.20 | 0.10 | 1.40 | 020 | 0.83 | 0.20 | 0.39 | 0.10 | 0.52 -0.53 -0.53
RMS x10% | 052 | 0.25 | 3.05 | 052 | 1.52 | 046 | 0.76 | 0.27 | 0.81 -0.42 -0.50

The evaluators were briefly introduced into the problem
of dynamic mesh compression, and then they have been
asked to perform an evaluation in accordance with the
following instructions:

e Have alook at all the animations, ideally in their full
length. Focus on possible artifacts and differences
with respect to the original.

Find an animation with the worst degradation and
assign a mark 10 to it.

Have a look again at all the animations, and assign
marks 0-10 to them according to how acceptable the
distortion is. Try to keep the marks proportional, i.e.,
double the mark value means twice less acceptable
distortion.

Give a mark 0 only to such data set where you cannot
find any difference with respect to the original.

Do not consult the marks with others, or show the
nature or location of the problematic parts to each
other. Work on your own.

These rules were followed by the evaluators, and thus
there was no influencing between the subjects. We have had
more than 170 voluntary evaluators—students of the MSc
degree in computer science. No evaluator has been engaged
more than twice.

The testresults are shown in Table 2; we are only giving the
mean marks (will be denoted Mean Opinion Score (MOS)),
the standard deviation of the marks and the 95 percent
confidence intervals. The actual data sets used as versions A-I
are published on the Internet (http://graphics.zcu.cz/
compression) along with details of the introduced distortion.
However, such details are irrelevant to the following
considerations, because we are trying to reach a measure
that does not rely on the knowledge of the error character.

5 ERROR MEASURES EVALUATION

For every distorted animation, we can evaluate any of the
error metrics presented so far. Subsequently, we can
observe the match of the computed error values, and the
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Fig. 2. Example of the relation of the subjective testing results with the
KG error measure.

results of subjective testing. Note that we do not want to
achieve matching values, because we do not know anything
about the magnitude of the error. What we do want to
achieve is the correlation between the computed values and
the subjective testing results.

As a measure of correlation, we use the Pearson
correlation coefficient which is defined for two variables X
and Y as:

oy = EIX = BOOXY = B0 @
Ox0y

where E(X) is the mean value of the variable X. The
coefficient takes values from the interval (—1;1). If
p(X,Y) =1, then there is a perfect increasing linear
dependence between the variables. The coefficient value
of —1 shows a perfect decreasing linear dependence. The
zero value shows that there is no linear relation between the
values of X and Y.

The correlation coefficient can be estimated from a
limited sample of the values by the following equation:

= ) (9)

where z denotes average value. This way, we have
evaluated the correlation of existing metrics with the
subjective testing. The results are summarized in Table 2.
Fig. 2 shows an example of the correlation of the KG error
with the results of the subjective testing.

All the existing error measures provide a small negative
linear correlation (see Table 2, column “Pearson”) with the
results of a subjective testing which involves multiple kinds
of distortion. In other words, there is no linear correlation
present at all. One possible explanation is that the measures
do correlate with subjective testing results, but the correla-
tion is not linear. We have, therefore, also evaluated the
Spearman [23] correlation coefficient for all the measures.
The Spearman coefficient is in fact similar to the Pearson
coefficient, only instead of evaluating the actual values, it
works with ranks. The result can be interpreted as how well
does the measure preserve the order of the results. Should
there be, for example, a logarithmic relation between the
perceived and the measured error, then the Pearson
coefficient may be small, however, the Spearman coefficient

should be large. However, Table 2 shows that not even the
Spearman coefficient shows any significant correlation, and
it is also negative in a number of cases. Also by looking at
the example of the relation shown in Fig. 2, one can see that
scaling the measured values will probably not yield any
better results.

The results we are presenting were obtained mainly from
male evaluators (only four females participated in the
presented experiments), however, we have later repeated
the experiment with the mocap dance sequence with
30 female subjects. The results of females have correlated
with the results of males with a Pearson correlation
coefficient of 0.984, and thus, we state that it is quite likely
that the results are gender independent.

6 SPATIOTEMPORAL EDGE DIFFERENCE

Motivated by the formal insufficiency of the existing error
measures and by the nonexistent correlation between
subjective testing results, we propose a new method for
measuring discrepancy between two dynamic meshes. Our
proposed measure is the spatiotemporal edge difference
(STED). The main ideas of the measure are the following;:

e We measure the error of some local property
independent of its absolute position. We have
experimented with the area of triangles, but we
have finally chosen edge lengths, because it is not
possible that the endpoints of the edge are moved
relative to each other, and the property remains
unchanged (this can easily happen in the case of
triangle area).

e Densely sampled areas of the mesh are likely to
contain fine geometric details, and thus are more
sensitive to distortion. This fact can be exploited by
using relative edge length difference rather than its
absolute length.

e Temporal artifacts and distortions can be included in
the same framework by considering virtual edges
connecting subsequent positions of a vertex.

e We focus on the local changes of the error rather
than on the absolute value of it. In order to do so, we
express a standard deviation of the edge difference
around each vertex, and sum these values to obtain
the overall error.

6.1 Spatial Error

Formally, the error can be derived as follows: first, we
denote length of an edge connecting vertices v; and v; (i.e.,
of the edge ¢;;) in frame f as follows:

el(eij, f) = va — v{”

Note that the el function applies separately on original
and distorted meshes. Now, we can define relative edge
difference as a property of a spatial edge connecting vertices
v; and v; (i.e., of the edge ¢;;) in frame f as follows:

el(eij, f) — el(@z‘ﬁf)H
el(ei},-,f) '

(10)

ed(eij, f) =

(11)




(a)

Fig. 3. Neighborhoods of the vertex v. The black circles denote the
elements of NV (v), the thick edges denote elements of NE(v,d). The
case (a) shows the situation when allowed topological distance d is 0,
the case (b) shows the situation when the allowed topological distance d
is 1.

Subsequently, for each vertex, we assign the local standard
deviation across the edges of given topological distance from
the vertex. The user specifies a topological distance d.
Subsequently, a set of vertices of topological distance lower
or equal to d is found for ith vertex and denoted NV (i, d).
Finally, a set NE(i,d) of edges incident with any of the
vertices of each NV (7, d) is found (see Fig. 3).

Now, we will compute the average relative edge
difference around a vertex. Due to the fact that the
surroundings of the vertex may contain edges of very
varying length, we compute a weighted average. The
weight of an edge is determined by its original length:

ZeeNE(i,d) ed(e, f)el(e, f)
ZeeNE(z’,d) el(e, f)
Now, we can express the local deviation around a vertex

v in frame f. Note that we are again using weighting by
edge length:

avged(i, f,d) =

(12)

dev(i, f,d) = o(ed(NE(i,d), f))

Seeneia(ed(e, ) — avged(i, f,d))*el
ZcéNE(i,d) el(e, f)

Finally, we have to average the value over all the vertices
and all the frames. Note that the value of (11) has a character
of a ratio, i.e., it is scale-independent, and therefore, also the
values of (13) and (14) are scale-independent.

1 vV F
STED,(d) = ﬁz > dev(i, f,d

i=1 f=1

(13)

(e, £)

(14)

6.2 Temporal Error

The reasoning behind the derivation of temporal error is
coherent with the derivation of the spatial error, only this
time, we will consider virtual edges connecting vertices in
subsequent frames. The idea of computing the relative edge
length which has been used in the spatial error case to
increase sensitivity in high-precision areas will be used
again to increase sensitivity in areas of a very slow motion.

This feature is based on the behavior of the falling cloth
sequence where some compression methods introduce
errors to the static parts of the scene, i.e., the static torus
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starts to move slightly. This is very noticeable, and therefore,
such artifact should be detected by an error measure.

However, we cannot use the exact equivalent of (11),
because in some animations, such as the dance sequence, it
is possible that some vertices become almost static for short
periods of time (usually the legs of the dancer). However,
the time period over which the movement becomes static is
too short for human observers to start detecting disturbing
artifacts.

In order to evaluate the steadiness of the movement of ith
vertex in a frame f, we compute the average speed of the
vertex within a temporal window of size w around the frame
f. First, we define temporal edge length tel as follows:

ld = maXi:L,V,j:L,V(HU} - UJIH)7 (15)
f+1 f
vl — !
z(L,f) ld )
f+1 f
v — v
dy Z,f Y Y©i ,
(@ 5) 1d (16)
v'fﬂ — !
dZ(Z,f) = — ’
. 2 . 2 92
tel(i, f,dt) = \/dx(i, f)* + dy(i, f)* + dz(i, f)? + d2.

Note that this value is not defined in the last frame. The
dt (distance in time) term is used to determine the temporal
distance between subsequent frames of the animation. The
main purpose of dt is to avoid zero length temporal edges
(static vertices), which would later cause infinity or near to
infinity results.

We can also interpret the d¢ constant as an actual
temporal distance t;.; —t; between subsequent frames
expressed in temporal units (ie., 1/25s in our case)
multiplied by an unknown relating constant «, which
describes the relation between spatial and temporal units
from the point of view of distortion perception, i.e.,
dt = a- (t;41 — t;). However, for the simplicity, we will later
only try to determine the value of the dt constant.

Also note that the character of (16), i.e., the presence of
square root and a constant dt, introduces a need for an early
spatial normalization. However, we want to achieve
rotation independence, and thus, we cannot use the main
diagonal of the first frame bounding box. Instead, we use
the distance Id of the two most distant points in the first
frame of the original sequence. In this way, we achieve a
more robust relative distance which is rotation-invariant.
The computation of Id in (15) is not necessarily quadratic
and can be speeded up to almost linear (for details, see [24]).

The average spatiotemporal speed s of the ith vertex in
the temporal vicinity of width w around the fth frame is
defined as:

min(F, f+w) .
o tel(z7 lf,dt)
s(i, f,w, dt) = 2t .an
min(F, f +w) — maac(l, f—w)

Note that due to using the constant dt in (16), this value
never becomes zero. Now, we can define the relative
temporal edge difference as follows:

Htel( .fa dt) — E(Zv .fa dt)”

ted(i, f,w,dt) = S0 oo db)

(18)
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Fig. 4. Dependence of the correlation coefficient on the topological
distance d used in (13).

Finally, the overall temporal error is defined as an
average over all the vertices and all the frames:

F-1

STED,(w, dt) ted(i, f,w, dt). (19)

6.3 Overall Error and its Parameters

We define the overall error as a hypotenuse of weighted
spatial and temporal error:

STED(d, w,dt, ) = \/ STED,(d)* + ¢ - STED;(w, dt)".
(20)

There are four constants that we have used so far in the
definition without discussion of their value. These are:

e topological distance d used to compute the vertex
neighbourhood NV (i,d),

e temporal distance value between subsequent frames
dt used in (16),

e temporal window size w used in (17),

e the relating constant c used in (20).

The actual values of these constants have been deter-
mined using the results of the subjective testing, achieving
the best possible correlation of (20) with the subjective
testing results.

7 STED PARAMETERS

In this section, we will estimate the values of the parameters
for the STED measure. The main objective is to achieve as
high correlation with the MOS as possible.

First, we will only consider the spatial part of the STED
value, i.e., the result of (14). The equation requires one

0.98
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£ os1 /
o
0.90 /
0.89 7
0.88
0 1 2 3 4 5 6 7 8

Speed window width

—+—Chicken -@~Dance -*-Cloth

Fig. 5. Dependence of the correlation coefficient on the vertex speed
window w used in (17).

parameter, the width of the topological neighborhood d
over which the deviation (13) is computed. For the
experiment, we have only considered the spatial error,
achieving the best results with topological distance 1 for the
neighboring vertices, i.e., the edge neighborhood of the
shape equivalent to Fig. 3b. Fig. 4 shows the measured
dependence of the correlation coefficient with the topolo-
gical neighborhood width, Table 3 gives the measured
values for neighborhood of distance 1.

Now, we will set the parameter values for the temporal
error. We have to set three parameters: the window size w
for the computation of the vertex speed in (17), the temporal
frame distance parameter dt used in (16), and the weight ¢
relating the spatial and the temporal error in (20).

Through a series of experiments, we have found values
for these constants so that the overall error expressed by (20)
correlates with the subjective testing results as much as
possible. We are presenting graphs that describe the
behavior of the correlations around the values we are using.
Figs. 5, 6 and 7 show the development of the correlation
coefficient around the selected values. The figures demon-
strate that the computation is not critically dependent on the
exact values of these constants.

The best results have been obtained for the speed
window of width w =5 and the temporal distance coeffi-
cient dt = 0.0003. The weighting coefficient c is easiest to
optimize, and the highest correlation has been obtained for
the value ¢ = 9.144 x 107°. Using these constants, we can
evaluate the error values shown in Table 4 along with the
correlations with the MOS.

Note that we have only used the first three data sets to
determine the parameters. The mocap dance data set has
been excluded from the optimization and serves as a check
that the algorithm works in cases for which it has not been

TABLE 3
Result of the Spatial Term of the STED Error
dataset A B C D E F G H 1 | pearson | spearman
chicken (x10%) | 448 | 5.06 | 0.64 | 5.02 | 091 | 3.00 | 252 | 0.00 | 1.24 0.960 0.950
dance (x10%) | 1.06 | 0.00 | 0.50 | 1.06 | 1.16 | 0.13 | 041 | 0.92 | 0.57 0.931 0.946
falling cloth (x10%) | 0.58 | 0.25 | 0.00 | 0.03 | 0.17 [ 0.38 [ 0.22 | 0.08 | 0.00 0.915 0.959
mocap dance (x10%) | 1.62 | 0.68 | 0.17 | 1.62 | 0.11 [ 1.32 | 0.07 | 0.78 | 0.14 0.976 0.916




0.98

o7 / SN—
£ 096
H /
=3
£ 095
U
] ./

0.94
5 d
kS
5 09
=
S 092

0.91 //

0.90

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

dt value

=~Chicken -w=Dance -+Cloth
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optimized. The achieved correlation of 0.976 asserts that the
algorithm yields high correlation even for data not used for
optimization. Note that there are distortion types only used
for the mocap dance data set, which shows that the
algorithm also works for some distortion types not used
for optimization.

8 PRACTICAL APPLICATION

In order to evaluate the practical importance of the proposed
measure, we have performed a series of tests using a
different data set, the human jump sequence (scanned
dynamic mesh, 15,830 vertices, 222 frames, for details see
[25], [26]). We have experimented with the Coddyac
compression scheme [4], using different configurations of
the compressor. Generally, there are two parameters that
influence the performance of the compressor: the number of
basis trajectories, and the quantization constant. Both
parameters can be used to steer the rate/distortions in a
similar way. By increasing the parameter value the error
should decrease, but the data rate should increase. We have
performed tests with the number of basis vectors from 5 to
40, and quantization constants from 7 to 13. The results
using the KG error measure is shown in Fig. 8, the STED
results are shown in Fig. 9.

The first observation is that the used measures provide
significantly different results. The basic development of the
curves remains unchanged, i.e., finer quantization leads to
lower error in both cases. However, the similarity fails
when different numbers of basis trajectories are used. In the
KG error measure curves, the error decreases with the
number of basis trajectories, which seems to be intuitive. In
the STED measures, this relation is more complex: for fine
quantization the relation holds, but for coarse quantization
the relation is reversed, i.e., more basis vectors introduce
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Fig. 7. Dependence of the correlation coefficient on the weighting
constant ¢ used in (20).

more error. This can be explained by the fact that the STED
mainly focuses on the local error which exhibits an additive
behavior, and therefore, increases when more basis vectors
with error are added together. In other words, adding a
low-importance basis vector will bring the vertices closer to
their original positions, however, it will increase the local
deviation of the error vectors (neighboring vertices will be
distorted in a different way).

The second observation is that the selection of compres-
sion parameters (number of basis vectors and quantization
constant) is strongly dependent on the measure used. The
KG measure prefers higher number of basis vectors, while
the quantization may remain coarse. On the other hand, the
STED measure usually drops significantly with finer
quantization, while the effect of adding basis vectors is
less significant.

We have prepared a series of distorted versions of the
human jump sequence, for which the STED and the KG
measures are inconsistent in decision about which one is
more acceptable. We have performed a blind subjective test
to determine whether the actual observations match the
results of the STED or the KG error.

Table 5 summarizes the findings from 21 subjective
evaluators. The column headers give the compression
parameters used in the format <number of Basis vectors>-
<Quantization constant>. We have intentionally selected
such parameters so that we could test hypotheses following
from Figs. 8 and 9. The findings are:

1. According to Fig. 9, the settings 10-8 should provide
result with smaller error than settings 40-8. Table 5
confirms this with values 9.62 for 40-8 and 7.00 for
10-8. This result is very unexpected and surprising,
because it shows that adding more basis vectors
leads to an increase of the perceived error. This

TABLE 4
Result of the STED Error Measure
dataset A B C D E F G H 1 | pearson | spearman
chicken (x10%) | 448 [ 557 | 0.64 | 5.02 | 091 | 3.73 | 258 | 0.13 | 1.24 0.970 0.950
dance (x10%) | 1.06 | 024 | 050 | 1.06 | 1.16 | 0.13 | 041 | 0.92 | 0.57 0.941 0.962
falling cloth (x10%) | 0.58 | 0.25 | 0.06 | 0.03 | 0.17 | 0.39 | 0.22 | 0.08 | 0.00 0.915 0.950
mocap dance (x10%) | 1.62 | 0.68 | 0.17 | 1.62 | 0.11 | 1.32 | 0.07 | 0.78 | 0.14 0.976 0.916
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Fig. 8. Rate/distortion curves for the jump sequence using the Coddyac
algorithm, using the KG error measure. Each curve represents a
constant number of basis vectors, and shows the dependency on the
quantization constant, changing from 7 bits/main diagonal (leftmost,
coarsest quantization) to 13 bits/main diagonal (rightmost, finest
quantization).

phenomenon is not detected by any existing error
measure.

2. At data rate approximately 0.75 bpfv, according to
Fig. 8, the optimal configuration of the coder is 35-9
while according to Fig. 9, it should be 15-13. The test
showed that result of configuration 15-13 achieved
the MOS 1.95, while the configuration 35-9 per-
formed significantly worse, reaching 6.57.

3. Similarly, atbitrate approximately 0.5bpfv, according
to Fig. 8, the optimal configuration of the coder is 25-8
while according to Fig. 9, it should be 10-12. The test
showed that result of configuration 10-12 achieved
MOS 1.23 while the configuration 25-8 performed
significantly worse, reaching 9.23.

4. According to Fig. 8, no significant improvement is
achieved when improving quantization from config-
uration 20-9 to 20-13, which contradicts Fig. 9, where
such change leads to drop of error to about one half.
The subjective results confirm the second conclusion
by MOS 6.00 for configuration 20-9 versus 1.52 for
configuration 20-13.

5. Similarly, according to Fig. 9, no significant improve-
ment is achieved when adding base trajectories from
configuration 15-13 to 30-13, which contradicts Fig. 8,
which shows that such change leads to drop of error to
about one half. The subjective results confirm the first
conclusionby MOS 1.95 for configuration 15-13 versus
1.62 for configuration 30-13.

All the tested assumptions following from the STED

measures have been confirmed by the experiment. Some
of the examples can be seen in Fig. 2. There is, however,
one unsolved contradiction following from the test. The
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Fig. 9. Rate/distortion curves for the jump sequence using the Coddyac
algorithm, using the STED error measure. Each curve represents a
constant number of basis vectors, and shows the dependency on the
quantization constant, changing from 7 bits/main diagonal (leftmost,
coarsest quantization) to 13 bits/main diagonal (rightmost, finest
quantization).

configuration 15-13 has reached the MOS 1.95, which is
worse than the result of configuration 10-12, which has
scored 1.23. This relation should be the other way round,
because 15-13 has both finer quantization and more basis
vectors. We believe that this is caused by the fact that
even at such low rates the visual error is so small that the
observers could not distinguish between the two versions,
and the difference is caused by random factors. This
explanation is supported by the standard deviation values
which are of similar magnitude as the MOS values
themselves.

The tests 2-5 show that used error measure has an
important impact on dynamic mesh algorithm configura-
tion. When configuring an algorithm, one has to decide on
what is the property of the data we wish to preserve, and
design the property measure accordingly. From this point of
view, scaling the measure values has no effect on the
algorithm configuration, i.e., a configuration which is
optimal in KG error optimization will be also optimal in
the MSE error optimization, because the KG error is no more
than a scaled version of the MSE. STED error, on the other
hand, is fundamentally different and has an important
impact on the choice of the optimal configuration.

9 CONCLUSIONS

We have proposed a novel method for measuring the
discrepancy between two dynamic meshes. Our contribu-
tions are:

e We have shown that there is only a weak relation
between the MSE and the perceived similarity of
dynamic meshes, and as such is of limited use for

TABLE 5
Subjective Experiment Results for the Human Jump Sequence
configuration <b>-<q> | 20-13 | 25-8 | 40-8 | 20-9 | 10-8 | 30-13 | 15-13 | 35-9 | 10-12
MOS | 152 | 924 | 962 | 600 | 700 | 1.62 | 195 | 657 | 124
Std. deviation | 1.17 | 0.89 | 059 | 1.58 | 1.73 | 153 | 153 | 1.80 | 1.30
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Fig. 11. The “hill/valley” artifact, not detected by the STED measure.

real tasks, such as configuration of a compression
algorithm by a rate/distortion optimization.

e We have determined the form of equations which
yield results with high correlation with subjective
testing.

e We have determined constants to be used in the
equations. These constants may notbe exact, however,
the result does not critically depend on their value.

Using the proposed STED measure, we are able to
robustly determine an error introduced by a compression.
We can detect certain kinds of spatial and temporal
artifacts, namely the difference between regular and
random vertex shifts. The measure we are proposing yields
results significantly different from the ones provided by
existing measures, which has a substantial influence on
dynamic mesh compression algorithm configuration, or
even dynamic mesh compression algorithm design.

Quite surprisingly, our experiments show that the
influence of temporal error is relatively small. The con-
tribution of the temporal error term in (20) is about
12 percent for the chicken sequence, and less than 2 percent
for the dance and cloth sequences. Nevertheless, the
inclusion of the temporal term improves the correlation
and may be important in cases where very little spatial error
is introduced into the animation.

The method has some drawbacks as well. In some cases,
such as rigid translation, rotation, and scale of the
animation, it is possible that the measure does not report
any difference. We consider such eventuality highly
unlikely and easy to detect and compensate. It is possible
that in some cases of extremely smooth deformation, such
as global taper or shear of the animation, the measured
error might be smaller than expected.

We have also identified a class of artifacts which will not
be detected by the measure at all. One can easily imagine
that the deformation depicted by Fig. 10 is well visible,
while all the edge lengths remain unchanged. This is not
only a problem of meshes with borders and with one edge
around which the mesh is rotated. Situation depicted by
Fig. 11 is also not detected by the measure. Such case may
occur in practise, however, a larger deformation that leaves
edge lengths unchanged is again very unlikely.

Despite the drawbacks, we have received measures that
correlate with the subjective testing with Pearson correla-
tion coefficient constantly higher than 0.9 during the testing.
In the case of the mocap dance sequence, we have reached
to a value of 0.976. In our experiments, such high
correlations are not achieved by any existing error measure

technique. Moreover, the STED measure is fast to evaluate,
especially compared to the Hausdorff distance based
measures such as the one used by the Metro tool.

10 FuTurRE WORK

In the future, we intend to perform a study of existing
compression algorithms and their performance with respect
to the proposed STED measure. We have shown that
moving from the KG error to the STED error requires
reconfiguration of the Coddyac coder in order to obtain the
best possible result. Similarly, other compression algo-
rithms have multiple configuration parameters (quantiza-
tion constant, level of simplification, number of clusters,
depth of used space subdivision structure, etc.) which need
to be optimized to obtain an optimal result with respect to a
given error measure. It is therefore not easy to perform a
fair comparison, and thus, we have not attempted to do
such study in this paper.

Currently, the measure only works for compression
evaluation, i.e., for cases when original and distorted
sequences share the connectivity. There is a possibility to
extend the measure also to the case of mesh sequences of
unequal connectivity. This could be done by fine resam-
pling of both meshes, which will convert them into a shared
topology, using some strain minimization criterion. There
are some techniques used for this purpose, such as the
Face2Face algorithm [27], [28], the wavelet decomposition
[29], or remeshing [30]. Extending the measure in this way
is a part of the intended future work.

We also intend to use the spatial part of the STED
measure to test the possibility of measuring the difference
between static meshes in order to compare results of static
mesh compression algorithms.

Detailed information about our research in the field of
dynamic mesh compression can be found on our website
http://graphics.zcu.cz/compression.
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