Mesh Statistics for Robust Curvature Estimation

Libor Váša^{1,2}, Petr Vaněček¹, Martin Prantl¹, Věra Skorkovská¹, Petr Martínek¹, Ivana Kolingerová^{1,2}

¹NTIS - New Technologies for the Information Society, University of West Bohemia ²Department of Computer Science and Engineering, University of West Bohemia

24. 6. 2016

The stage

Surface curvature

- κ_1 and κ_2
- κ_G and κ_H
- local differential properties of smooth surfaces

Triangle mesh

- represents the surface
- connectivity
- geometry

The stage

Surface curvature

- κ_1 and κ_2
- κ_G and κ_H
- local differential properties of smooth surfaces

Triangle mesh

- represents the surface
- connectivity
- geometry

Objective

Estimate curvature at vertices of the triangle mesh

- curvature of the approximated surface
- cannot be (really) done

Objective

Estimate curvature at vertices of the triangle mesh

- curvature of the approximated surface
- cannot be (really) done

Objective

Estimate curvature at vertices of the triangle mesh

- curvature of the approximated surface
- cannot be (really) done

Objective

Estimate curvature at vertices of the triangle mesh

- curvature of the approximated surface
- cannot be (really) done

Objective

Estimate curvature at vertices of the triangle mesh

- curvature of the approximated surface
- cannot be (really) done

Objective

Estimate curvature at vertices of the triangle mesh

- curvature of the approximated surface
- cannot be (really) done

Objective

Estimate curvature at vertices of the triangle mesh

- curvature of the approximated surface
- cannot be (really) done

Many approaches exist

- fitting a smooth surface
- integrating over a finite area
- estimating shape operator
- ...

Key question

Which estimator should I use?

Depends on the character of the data.

Many approaches exist

- fitting a smooth surface
- integrating over a finite area
- estimating shape operator
- ...

Key question

Which estimator should I use?

Depends on the character of the data.

Many approaches exist

- fitting a smooth surface
- integrating over a finite area
- estimating shape operator
- ...

Key question

Which estimator should I use?

Depends on the character of the data.

The experiment

- generate many smooth surfaces (curvature known)
- generate many meshes
 - different properties
 - each mesh homogeneous
- compute exact curvatures
- test many estimators

Key question

Can we guess which estimator will work well just from the mesh properties?

The experiment

- generate many smooth surfaces (curvature known)
- generate many meshes
 - different properties
 - each mesh homogeneous
- compute exact curvatures
- test many estimators

Key question

Can we guess which estimator will work well just from the mesh properties?

Experiment configuration

```
<TestConfig xmlns="http://Zcu.CurvatureBenchmark/testconfig.xsd">
  <Sources>
    <SphereSource MinRadius="1" MaxRadius="10" Subdivision="4" />
  </Sources>
  <Distorters>
    <NoDistorter/>
    <NormalsMax/>
  </Distorters>
  <Estimators>
    <RusinkiewiczEstimator Active="true" />
    <GoldfeatherInterranteEstimator Active="false" method="1" neighborhood</pre>
    <CSMEstimator Active="true" RangeKEdge="2" />
  </Estimators>
  <Evaluators>
    <BasicEvaluator />
  </Evaluators>
</TestConfig>
```

Data Sources

- explicit functions z = f(x, y)
- implicit functions f(x, y, z) = 0;
- NURBS surfaces

Explicit functions

- function $z(x,y) = Ax^2 + By^2 + Cxy + Dx + Ey$
 - *A*, *B*, *C*, *D*, *E* random
 - different (differentiable) functions can be easily plugged in
- different samplings
 - regular rectangular
 - regular triangular
 - randomized (regular triangular + noise)
 - random
- different densities

Explicit functions

- function $z(x, y) = Ax^2 + By^2 + Cxy + Dx + Ey$
 - *A*, *B*, *C*, *D*, *E* random
 - different (differentiable) functions can be easily plugged in
- different samplings
 - regular rectangular
 - regular triangular
 - randomized (regular triangular + noise)
 - random
- different densities

Explicit functions

- function $z(x, y) = Ax^2 + By^2 + Cxy + Dx + Ey$
 - A, B, C, D, E random
 - different (differentiable) functions can be easily plugged in
- different samplings
 - regular rectangular
 - regular triangular
 - randomized (regular triangular + noise)
 - random
- different densities

Implicit functions

- function Asin(Bx) + Csin(Dy) + sin(Ez) = 0
- different triangulations
 - Marching cubes
 - Adaptive Dual Contouring
- different evaluation
 - inexact (interpolation on grid edges)
 - exact (interval subdivisior on grid edges)

Implicit functions

- function Asin(Bx) + Csin(Dy) + sin(Ez) = 0
- different triangulations
 - Marching cubes
 - Adaptive Dual Contouring
- different evaluation
 - inexact (interpolation on grid edges)
 - exact (interval subdivision on grid edges)

Implicit functions

- function Asin(Bx) + Csin(Dy) + sin(Ez) = 0
- different triangulations
 - Marching cubes
 - Adaptive Dual Contouring
- different evaluation
 - inexact (interpolation on grid edges)
 - exact (interval subdivision on grid edges)

NURBS surfaces

- commonly used parametric surfaces
- cubic surfaces used
- same sampling schemes in UV as with explicit surfaces in XY
- random positions of control mesh
- random weights

Distortions

- Gaussian noise
 - common scanning artifact
 - different strengths
- uniform noise
 - common compression artifact
 - different strengths
- computation of vertex normals
 - needed by some estimators
 - usually estimated from the mesh
 - the common method by Nelson Max used

Distortions

- Gaussian noise
 - common scanning artifact
 - different strengths
- uniform noise
 - common compression artifact
 - different strengths
- computation of vertex normals
 - needed by some estimators
 - usually estimated from the mesh
 - the common method by Nelson Max used

Distortions

- Gaussian noise
 - common scanning artifact
 - different strengths
- uniform noise
 - common compression artifact
 - different strengths
- computation of vertex normals
 - needed by some estimators
 - usually estimated from the mesh
 - the common method by Nelson Max used

Estimators

- [Meyer] (cotan discretization of Laplacian, angle deficit)
- [Goldfeather and Interrante]
 - circe fitting
 - parabola fitting
- [Rusinkiewicz] (estimation of II)
- [Kalogerakis et al.] (adaptive estimation of II)

- [Cohen-Steiner and Morvan] (shape operator estimation)
- [Zhihong et al.] (Bézier patches)
- [Fünfzig et al.] (PNG-1 patches)
- [Pottmann et al.] (integral invariants)
- [Hildebrandt and Polthier] (estimation of generalized shape operators)

Note

We do not discuss whether using those is appropriate, we just

Estimators

- [Meyer] (cotan discretization of Laplacian, angle deficit)
- [Goldfeather and Interrante]
 - circe fitting
 - parabola fitting
- [Rusinkiewicz] (estimation of II)
- [Kalogerakis et al.] (adaptive estimation of II)

- [Cohen-Steiner and Morvan] (shape operator estimation)
- [Zhihong et al.] (Bézier patches)
- [Fünfzig et al.] (PNG-1 patches)
- [Pottmann et al.] (integral invariants)
- [Hildebrandt and Polthier] (estimation of generalized shape operators)

Note

We do not discuss whether using those is appropriate, we just measure the results

Evaluation

Absolute error for *i*-th estimator and *j*-th mesh:

$$e_i(\mathcal{M}_j) = \frac{1}{N} \sum_{k=0}^{N-1} (\|\kappa_1^k - \hat{\kappa_1^k}\| + \|\kappa_2^k - \hat{\kappa_2^k}\|)$$

Relative error, related to the best achieved accuracy

$$\hat{e}_i(\mathcal{M}_j) = \frac{e_i(\mathcal{M}_j) - e_{min}(\mathcal{M}_j)}{e_{min}(\mathcal{M}_j)}, e_{min}(\mathcal{M}_j) = \min_i(e_i(\mathcal{M}_j))$$

Average over all meshes \bar{e} measured for each estimator

Evaluation

Absolute error for *i*-th estimator and *j*-th mesh:

$$e_i(\mathcal{M}_j) = \frac{1}{N} \sum_{k=0}^{N-1} (\|\kappa_1^k - \hat{\kappa_1^k}\| + \|\kappa_2^k - \hat{\kappa_2^k}\|)$$

Relative error, related to the best achieved accuracy:

$$\hat{e}_i(\mathcal{M}_j) = \frac{e_i(\mathcal{M}_j) - e_{min}(\mathcal{M}_j)}{e_{min}(\mathcal{M}_j)}, e_{min}(\mathcal{M}_j) = \min_i(e_i(\mathcal{M}_j))$$

Average over all meshes $ar{e}$ measured for each estimator

Evaluation

Absolute error for *i*-th estimator and *j*-th mesh:

$$e_i(\mathcal{M}_j) = \frac{1}{N} \sum_{k=0}^{N-1} (\|\kappa_1^k - \hat{\kappa_1^k}\| + \|\kappa_2^k - \hat{\kappa_2^k}\|)$$

Relative error, related to the best achieved accuracy:

$$\hat{e}_i(\mathcal{M}_j) = \frac{e_i(\mathcal{M}_j) - e_{min}(\mathcal{M}_j)}{e_{min}(\mathcal{M}_j)}, e_{min}(\mathcal{M}_j) = \min_i(e_i(\mathcal{M}_j))$$

Average over all meshes \bar{e} measured for each estimator

- all results are in the paper and supplementary material
- results can be reproduced using our software

- general observations:
 - no single winner
 - big differences with noise
 - big differences with sampling

- all results are in the paper and supplementary material
- results can be reproduced using our software

- general observations:
 - no single winner
 - big differences with noise
 - big differences with sampling

Meta-estimator

- analyzes the input mesh
- chooses appropriate estimator

- capture significant global characteristics of meshes
- computed locally
 - per vertex
 - per triangle
 - per edge
 - per corner
- pooling operators
 - minimum/maximum
 - median, mean
 - standard deviation

- capture significant global characteristics of meshes
- computed locally
 - per vertex
 - per triangle
 - per edge
 - per corner
- pooling operators
 - minimum/maximum
 - median, mean
 - standard deviation

- capture significant global characteristics of meshes
- computed locally
 - per vertex
 - per triangle
 - per edge
 - per corner
- pooling operators
 - minimum/maximum
 - · median, mean
 - standard deviation

- edge lengths (relative to average)
- dihedral angles (signed, unsigned)
- triangle inner angles
- triangle circumcircle/inscibed circle ratio
- vertex adjacent solid angles
- vertex degrees
- differential coordinates
 - uniform
 - cotan discretization
 - mean value discretization

Laplacian discretizations

Uniform discretization of Laplacian

$$\mathbf{d}_i^u = \frac{1}{\|N(i)\|} \sum_{j \in N(i)} (\mathbf{v}_j - \mathbf{v}_i)$$

captures sampling irregularity and normal offset

Mean value Laplacian

$$\mathbf{d}_i^m = \sum_{j \in N(i)} \frac{w_{ij}(\mathbf{v}_j - \mathbf{v}_i)}{\sum_{j \in N(i)} w_{ij}}, w_{ij} = \frac{\tan(\alpha/2) + \tan(\beta/2)}{\|\mathbf{v}_i - \mathbf{v}_j\|}$$

captures normal offset

Laplacian discretizations

Uniform discretization of Laplacian

$$\mathbf{d}_i^u = \frac{1}{\|N(i)\|} \sum_{j \in N(i)} (\mathbf{v}_j - \mathbf{v}_i)$$

captures sampling irregularity and normal offset

Mean value Laplacian

$$\mathbf{d}_i^m = \sum_{j \in N(i)} \frac{w_{ij}(\mathbf{v}_j - \mathbf{v}_i)}{\sum_{j \in N(i)} w_{ij}}, w_{ij} = \frac{\tan(\alpha/2) + \tan(\beta/2)}{\|\mathbf{v}_i - \mathbf{v}_j\|}$$

captures normal offset

Laplacian difference

Laplacian difference

$$\mathbf{d}_i^d = \mathbf{d}_i^u - \mathbf{d}_i^m$$

captures sampling irregularity

Smoothness statistic

- uses cotan discretization of mesh Laplacian L
- measures smoothness of the mean curvature normal vectors:

$$\mathbf{s} = \overline{l}^2 L^2 \mathbf{v}$$

- \bullet scaling by squared average edge length \overline{l} ensures scale independence
- per-vertex vector lengths used as input to pooling operators

Meta-estimator results

- evaluate a statistic, decide between two estimators
- tested all combinations
- threshold learned from a subset of 35% of the meshes

Meta-estimator results

- evaluate a statistic, decide between two estimators
- tested all combinations
- threshold learned from a subset of 35% of the meshes

- best results:
 - median s used for the desicison
 - fitting circles [Goldfeather and Interrante] ($\bar{e} = 15.19$)
 - generalized shape operator [Hildebrandt and Polthier] ($\bar{e} = 37.99$)
 - result: $\bar{e} = 1.18$

2-level meta-estimator

- threshold for S_2 determined first
- $E_2 + S_2 + E_3$ treated as a single estimator in order to determine the threshold for S_1
- computationally expensive
- optimal values not guaranteed

2-level meta-estimator

- threshold for S₂ determined first
- $E_2 + S_2 + E_3$ treated as a single estimator in order to determine the threshold for S_1
- computationally expensive
- optimal values not guaranteed

- best results:
 - median s used as both S_1 and S_2 (different thresholds)
 - cotan Laplacian [Meyer] as E₁
 - generalized shape operator [Hildebrandt and Polthier] as E₂
 - adaptive II estimation [Kalogerakis et al.] as E₃
 - $\bar{e} = 0.86$

Experiments with noiseless data only

- single level meta-estimator:
 - mean of Laplacian difference \mathbf{d}^d used as threshold (captures regularity of sampling)
 - decision between fitting circles [Goldfeather and Interrante] and cotan Laplacian [Meyer]
 - resulting $\bar{\it e}=0.45$
- 2-level meta-estimator
 - top-level choice based on mean Laplacian difference d^d
 - bottom-level choice based on std. deviation of mean value Laplacian vector lengths
 - cotan Laplacian [Meyer] as E₁
 - circle fitting [Goldfeather and Interrante] as E_2 and E_3 (different radius)
 - $\bar{e} = 0.31$

Experiments with noiseless data only

- single level meta-estimator:
 - mean of Laplacian difference \mathbf{d}^d used as threshold (captures regularity of sampling)
 - decision between fitting circles [Goldfeather and Interrante] and cotan Laplacian [Meyer]
 - resulting $\bar{\it e}=0.45$

2-level meta-estimator

- top-level choice based on mean Laplacian difference d^d
- bottom-level choice based on std. deviation of mean value Laplacian vector lengths
- cotan Laplacian [Meyer] as E₁
- circle fitting [Goldfeather and Interrante] as E_2 and E_3 (different radius)
- $\bar{e} = 0.31$

Conclusions

- results confirm intuitive common knowledge on curvature estimation
- the experiment is very easy to modify
- new estimators can be easily added and tested
- available online: http://graphics.zcu.cz/curvature.html

future work

- neural networks for meta-estimators
- localized meta-estimators
- test normal estimators
- test principal curvature direction estimators

Conclusions

- results confirm intuitive common knowledge on curvature estimation
- the experiment is very easy to modify
- new estimators can be easily added and tested
- available online: http://graphics.zcu.cz/curvature.html

future work

- neural networks for meta-estimators
- localized meta-estimators
- test normal estimators
- test principal curvature direction estimators

Questions?

http://graphics.zcu.cz/curvature.html

This work was supported by the Czech Ministry of Education, Youth and Sports - the project LO1506 and University spec. research - 1311; by the UWB grant SGS-2016-013 Advanced Graphical and Computing Systems; and by the 1st Internal grant scheme of DCSE+P2, 2015.