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Mesh Statistics for Robust Curvature Estimation
The stage

Surface curvature
@ k1 and kp
@ kg and ky
@ local differential properties of smooth surfaces
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The stage

Surface curvature
@ K and K2
@ kg and ky
@ local differential properties of smooth surfaces

Triangle mesh

@ represents the surface S v\i«
@ connectivity Nrf }
@ geometry ﬁ’f"
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Mesh Statistics for Robust Curvature Estimation
The problem

Many approaches exist
@ fitting a smooth surface
@ integrating over a finite area
@ estimating shape operator
° ..

Key question
Which estimator should | use?

Depends on the character of the data.
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The experiment

@ generate many smooth surfaces (curvature known)

@ generate many meshes

o different properties
e each mesh homogeneous

@ compute exact curvatures

@ test many estimators
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The experiment

@ generate many smooth surfaces (curvature known)

@ generate many meshes

o different properties
e each mesh homogeneous

@ compute exact curvatures
@ test many estimators

Key question

Can we guess which estimator will work well just from the mesh
properties?
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Experiment configuration

<TestConfig xmlns="http://Zcu.CurvatureBenchmark/testconfig.xsd">
<Sources>
<SphereSource MinRadius="1" MaxRadius="10" Subdivision="4" />
</Sources>
<Distorters>
<NoDistorter/>
<NormalsMax/>
</Distorters>
<Estimators>
<RusinkiewiczEstimator Active="true" />
<GoldfeatherInterranteEstimator Active="false" method="1" neighborhooc
<CSMEstimator Active="true" RangeKEdge="2" />
</Estimators>
<Evaluators>
<BasicEvaluator />
</Evaluators>
</TestConfig>
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Data Sources

@ explicit functions z = f(x,y)
@ implicit functions f(x, y,z) = 0;
@ NURBS surfaces
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Explicit functions

e function z(x,y) = Ax?> + By? + Cxy + Dx + Ey
e A,B,C, D, Erandom
o different (differentiable) functions can be easily plugged in
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Explicit functions

e function z(x,y) = Ax? + By? + Cxy + Dx + Ey

e A, B, C, D, Erandom

o different (differentiable) functions can be easily plugged in
@ different samplings

e regular rectangular

e regular triangular

e randomized (regular triangular + noise)

e random

@ different densities
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Implicit functions

@ function Asin(Bx) + Csin(Dy) + sin(Ez) = 0
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Implicit functions

@ function Asin(Bx) + Csin(Dy) + sin(Ez) = 0

@ different triangulations
e Marching cubes
e Adaptive Dual Contouring
£
i
@ different evaluation |
e inexact (interpolation on grid K\w\
edges)
e exact (interval subdivision
on grid edges)
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NURBS surfaces

@ commonly used parametric surfaces

@ cubic surfaces used

@ same sampling schemes in UV as with explicit surfaces in XY
@ random positions of control mesh

@ random weights

10/26
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Distortions

@ Gaussian noise

@ common scanning artifact
o different strengths
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Distortions

@ Gaussian noise

@ common scanning artifact
o different strengths

@ uniform noise

@ common compression artifact
o different strengths

@ computation of vertex normals

@ needed by some estimators
o usually estimated from the mesh
e the common method by Nelson Max used
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Estimators

@ [Meyer] (cotan discretization of @ [Cohen-Steiner and Morvan]

Laplacian, angle deficit) (shape operator estimation)
@ [Goldfeather and Interrante] @ [Zhihong et al.] (Bézier
e circe fitting patches)
° parabola fitting o [Finfzig et al.] (PNG-1
@ [Rusinkiewicz] (estimation of patches)
1) @ [Pottmann et al.] (integral
@ [Kalogerakis et al.] (adaptive invariants)
estimation of 1) o [Hildebrandt and Polthier]

(estimation of generalized
shape operators)
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Estimators

@ [Meyer] (cotan discretization of
Laplacian, angle deficit)
@ [Goldfeather and Interrante]
e circe fitting
e parabola fitting
@ [Rusinkiewicz] (estimation of
1)
@ [Kalogerakis et al.] (adaptive
estimation of II)

Note

@ [Cohen-Steiner and Morvan]
(shape operator estimation)

@ [Zhihong et al.] (Bézier
patches)

@ [Finfzig et al.] (PNG-1
patches)

@ [Pottmann et al.] (integral
invariants)

@ [Hildebrandt and Polthier]
(estimation of generalized
shape operators)

We do not discuss whether using those is appropriate, we just

measure the results
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Evaluation

Absolute error for i-th estimator and j-th mesh:

N—

1
=N Sk — L+ 15 — 1)
k=0

,_\

13/26



Libor Vasa et al. Mesh Statistics for Robust Curvature Estimation

Evaluation

Absolute error for i-th estimator and j-th mesh:

1 N—-1

=N > (st - k) + 115 — 1)
k=0

Relative error, related to the best achieved accuracy:

ei(M;) — emin(M;)
emin(Mj)

éi(/\/lj) = aemin(Mj) = Iniin(ei(Mj))
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Evaluation

Absolute error for i-th estimator and j-th mesh:

1 N—-1 R R

)= 55 2 (e = w1l + 155 — w51
k=0

Relative error, related to the best achieved accuracy:

ei(M;) — emin(M;)
emin(Mj)

éi(/\/lj) = aemin(Mj) = Iniin(ei(Mj))

Average over all meshes e measured for each estimator
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Results
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Results

NURBS surfaces

NURBS surfaces

explicit functions

explicit functions
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Results

@ all results are in the paper and supplementary material
@ results can be reproduced using our software
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Results

@ all results are in the paper and supplementary material
@ results can be reproduced using our software

@ general observations:

@ no single winner
o big differences with noise
o big differences with sampling
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Meta-estimator

@ analyzes the input mesh
@ chooses appropriate estimator
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Statistics

@ capture significant global characteristics of meshes
@ computed locally
@ per vertex
per triangle
e per edge
@ per corner
@ pooling operators
@ minimum/maximum
e median, mean
e standard deviation
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Statistics

edge lengths (relative to average)
dihedral angles (signed, unsigned)
triangle inner angles

vertex adjacent solid angles

vertex degrees
differential coordinates

@ uniform
@ cotan discretization
@ mean value discretization

°
°
°
@ triangle circumcircle/inscibed circle ratio
°
°
°
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Laplacian discretizations

Uniform discretization of Laplacian

u __ 1 0 .
d; —w Z (vj — i)

JEN()

captures sampling irregularity and normal offset
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Laplacian discretizations

Uniform discretization of Laplacian

u __ 1 . .
d; —w Z (vj — i)

JEN()

captures sampling irregularity and normal offset

Mean value Laplacian
wii(vi—vi)  tan(a/2) + tan(B/2)

1

Gy ZieNe) Wi lvi =il

captures normal offset
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Laplacian difference
Laplacian difference
df = dy - ay

captures sampling irregularity
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Smoothness statistic

@ uses cotan discretization of mesh Laplacian L
@ measures smoothness of the mean curvature normal vectors:

s =L

@ scaling by squared average edge length I ensures scale
independence

@ per-vertex vector lengths used as input to pooling operators
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Meta-estimator results

@ evaluate a statistic, decide between two estimators
@ tested all combinations
@ threshold learned from a subset of 35% of the meshes
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Meta-estimator results

@ evaluate a statistic, decide between two estimators
@ tested all combinations
@ threshold learned from a subset of 35% of the meshes

@ best results:
e median s used for the desicison
fitting circles [Goldfeather and Interrante] (e = 15.19)
generalized shape operator [Hildebrandt and Polthier] (e = 37.99)
result: e = 1.18

22/26



Libor Vasa et al. Mesh Statistics for Robust Curvature Estimation

2-level meta-estimator

@ threshold for S, determined first

@ E, + S, + Es treated as a single estimator in order to determine
the threshold for S;

@ computationally expensive
@ optimal values not guaranteed
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2-level meta-estimator

@ threshold for S, determined first

@ F; + &, + Es treated as a single estimator in order to determine
the threshold for S;

@ computationally expensive
@ optimal values not guaranteed

@ best results:

e median s used as both S; and S, (different thresholds)
cotan Laplacian [Meyer] as E;

generalized shape operator [Hildebrandt and Polthier] as E,
adaptive II estimation [Kalogerakis et al.] as E;

e=0.86
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Experiments with noiseless data only

@ single level meta-estimator:

e mean of Laplacian difference d¢ used as threshold (captures
regularity of sampling)

e decision between fitting circles [Goldfeather and Interrante] and
cotan Laplacian [Meyer]

e resultinge = 0.45
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Experiments with noiseless data only

@ single level meta-estimator:

mean of Laplacian difference d¢ used as threshold (captures
regularity of sampling)

decision between fitting circles [Goldfeather and Interrante] and
cotan Laplacian [Meyer]

resulting e = 0.45

@ 2-level meta-estimator

top-level choice based on mean Laplacian difference d*
bottom-level choice based on std. deviation of mean value
Laplacian vector lengths

cotan Laplacian [Meyer] as E;

circle fitting [Goldfeather and Interrante] as E, and E; (different
radius)

e=0.31
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Conclusions

@ results confirm intuitive common knowledge on curvature
estimation

@ the experiment is very easy to modify
@ new estimators can be easily added and tested
@ available online: http://graphics.zcu.cz/curvature.html
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Conclusions

@ results confirm intuitive common knowledge on curvature
estimation

@ the experiment is very easy to modify
@ new estimators can be easily added and tested
@ available online: http://graphics.zcu.cz/curvature.html

future work
@ neural networks for meta-estimators
@ localized meta-estimators
@ test normal estimators
@ test principal curvature direction estimators
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Questions?

http://graphics.zcu.cz/curvature.html

This work was supported by the Czech Ministry of Education, Youth and Sports - the project
LO1506 and University spec. research - 1311; by the UWB grant SGS-2016-013 Advanced
Graphical and Computing Systems; and by the 1st Internal grant scheme of DCSE+P2, 2015.
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