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Abstract. We propose a single-rate method for geometry compression
of triangle meshes based on using a neural predictor to predict the en-
coded vertex positions using connectivity and an already known part of
the geometry. The method is based on standard traversal-based meth-
ods but uses a neural predictor for prediction instead of a hand-crafted
prediction scheme. The parameters of the neural predictor are learned
on a dataset of existing triangle meshes. The method additionally in-
cludes an estimate of the prediction uncertainty, which is used to guide
the encoding traversal of the mesh. The results of the proposed method
are compared with a benchmark method on the ABC dataset using both
mechanistic and perceptual metrics.
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1 Introduction

The compression of triangle meshes is a very often solved problem in the field of
computer graphics. Triangle meshes are a widely used representation of shapes,
mainly due to their efficient rendering, simple structure, and good representation
capabilities. In order to accurately represent even complex shapes using triangle
meshes, triangle meshes reach a large number of vertices that carry information
about the geometry of the shape. As the number of vertices increases, it is advis-
able to compress the triangle meshes to achieve compactness of representation.

A triangle mesh is the set of vertices, edges, and triangle faces M = (V,E, F ),
where the set of edges can be derived from the set of faces, and the mesh can
thus only be described by the set of vertices and faces M = (V, F ). The vertices
of the mesh carry information about the geometry of the surface since they have
a position in space. The triangle faces form the connectivity of the mesh and tell
which triplets of vertices are to be connected into the resulting triangles.

Today, there is a large number of algorithms for compressing the geometry of
triangle meshes that achieve a good ratio of bitrate to distortion. A significant
group of these algorithms is connectivity-driven approaches that use the infor-
mation contained in the connectivity to reduce the bitrate since the connectivity
itself partially indicates the mesh geometry. These approaches also exploit the
fact that, as the mesh is incrementally decoded, the decoder can use the already
decoded part of the geometry to predict the rest of it. How the decoder performs
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such a prediction is determined by the prediction scheme of the method. One of
the simplest ways to predict a decoded vertex is the parallelogram prediction [21].
However, there are also more sophisticated methods that use, in addition to the
vertex positions of adjacent triangles, e.g., vertex valence or already decoded
interior angles of a triangle, such as the weighted parallelogram [22].

In this paper, we propose a prediction scheme based on encoded vertex pre-
diction using a neural network that, similar to conventional prediction schemes,
performs prediction based on an already decoded part of the geometry. We ex-
ploit the neural network’s ability to better predict the position of the encoded
vertex across different meshes. We compare our results in terms of rate-distortion
ratio with the weighted parallelogram as the reference method using mechanistic
and perceptual mesh quality assessment metrics.

2 Related Work

In the domain of compression single triangle meshes, we typically consider lossy
compression, where the vertex coordinates are encoded with distortion while the
connectivity is encoded losslessly. There is also a number of mesh-simplification
approaches that allow for a lossy compression of connectivity. However, we do
not consider these methods in this paper. When compressing a mesh, we can
choose whether to encode the connectivity or the geometry first. Although there
are methods that encode the mesh geometry first and then use its knowledge
to encode the connectivity more efficiently [7, 15], most methods encode the
connectivity first and then the geometry.

One of the simplest approaches for geometry compression is based on predict-
ing the position of the encoded vertex using parallelogram prediction, proposed
by Touma and Gotsman [21] in 1998. When encoding a vertex X that incides
with an already encoded base triangle △BLR over an edge (L,R) (gate), we
can predict its position using Equation 1 as shown in Figure 1. Then, instead of
encoding the coordinates of the vertex X, only the correction vector X−Xpred
is encoded. This correction is typically further quantized, where the resolution
of the quantization affects the distortion of the decoded mesh, and then it is
compressed using an entropy encoder such as an arithmetic encoder.

Xpred = L+R− B (1)

Also, in 1998, Taubin and Rossignac [20] proposed a compression method
topological surgary. This method works with a spanning tree of the connectiv-
ity of triangle mesh. Based on the spanning tree, the encoded vertices of the
mesh are then predicted from 2, 3, or 4 of its ancestors in the tree using linear
extrapolation.

The connectivity of a triangle mesh can be efficiently encoded based on the
encoding of the valences of vertices [1, 21]. Due to the non-uniform probability
for different vertex valences, it is possible to use shorter words to compress more
probable valences and longer words to compress less probable valences. Rossignac
proposed a method for connectivity compression called Edgebreaker [17], which
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Fig. 1. Diagram showing parallelogram prediction of the vertex.

is based on compressing a sequence of CLERS symbols that are formed by
sequentially traversing the mesh and encoding the different ways in which an
encoded vertex can be attached to an already decoded part of the mesh.

Geometry prediction was improved by Lee et al. with the Angle-Analyzer
method [13], which encodes the vertex position using the interior angles of the
triangle and the dihedral angle. This work also considers a priority-based mesh
traversal, in which the priority of the decoded triangle is controlled based on the
already decoded angles. Sim et al. [18] proposed an extension of the parallelogram
prediction to dual parallelogram prediction, which predicts the position of an
encoded vertex by making a prediction based on each pair of successive triangles
in a triangle fan. Gumhold and Amjoun [8] proposed a prediction scheme based
on separating the tangential and normal components of the correction. Their
method first encodes the tangential coordinates of the vertex, which are predicted
by the parallelogram. Subsequently, a higher-order surface is fitted to predict the
normal component.

Kälberer et al. proposed FreeLence, a connectivity coding method based on
free valences [12]. Free valence codes benefit from a geometry-guided mesh traver-
sal. Mesh traversal is guided by the so-called opening angle, which is given by
the difference of 2π and the sum of the known angles around a given vertex.
This information is also used to separate the encoded symbols into different con-
texts, which exploits the fact that each free valence has its own distribution of
correction values. Courbet and Hudelot [6] derived a modified set of weights for
various linear geometry predictors using Taylor expansion of the mesh geometry
function. Váša and Brunnett [22] proposed weighted parallelogram, which uses
a parallelogram predictor with weights, which are derived based on known angles
that are already decoded and the valences of vertices.

In contrast to the above-mentioned single-rate compression methods, Pa-
jarola and Rossignac [16] proposed a progressive coding method. This method
first transmits a simplified coarse version of the original mesh and then encodes
the vertex splits into batches to refine the coarse mesh progressively. The dis-
placement of a new vertex that is created during vertex splitting is predicted
based on the Butterfly subdivision scheme, which further leads to a reduction
in the data rate. Cohen and Irony proposed another progressive method [5].
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They also use the idea of averaging multiple parallelogram predictions to obtain
a more accurate estimate of the position of the encoded vertex.

In addition to methods based on a prediction scheme that uses mesh con-
nectivity and the decoded part of the geometry, there are also methods based
on spectral analysis, such as Karni and Gotsman [9], which use a projection of
the mesh geometry onto an orthonormal basis derived from the mesh topology.
This approach offers the possibility of separating low and high-frequency signals
and encoding them with different precision, given that different frequencies of
distortion are perceived with different intensities.

Another popular geometry compression approach is the encoding of delta-
coordinates [4,19,23], which are obtained as a result of discrete Laplace operators
of the geometry function. For a more detailed look into the compression of tri-
angle meshes, we refer the reader to the surveys of Alliez and Gotsman [2] or
Maglo et al. [14].

When comparing algorithms for triangle mesh compression, it is essential
how the distortion caused by lossy geometry compression is measured. For this
purpose, quality assessment metrics are used. Mechanistic metrics, such as Mean
Squared Error (MSE) of the vertices, Hausdorff distance, or Average Absolute
Surface Distance (AvgD), are typically easy to compute. However, mechanistic
metrics depend on properties such as the distance between points of a surface
and often do not correlate well with the human perception of the distortion. In
contrast, perceptual metrics such as Dihedral Angle Mesh Error (DAME) [24]
or Fast Mesh Perceptual Distance [25] (FMPD) describe the distortion better
in the context of human perception. These metrics typically depend on features
such as curvature, roughness, or dihedral angles.

3 Compression Method

Our compression method, as well as many other connectivity-first compression
methods, uses the Edgebreaker method [17] to compress the connectivity of a
triangle mesh as a sequence of CLERS symbols. The connectivity of the triangle
mesh is encoded first and can thus be used to remove redundancy in geometry
encoding.

An improvement in compression ratio over other single-rate state-of-the-art
methods, primarily the Weighted parallelogram, is achieved by our method at
the geometry compression level. We use an approach similar to FreeLence or
Weighted parallelogram. The method is based on predicting the position of the
encoded vertex. This then makes it unnecessary to encode the positions them-
selves; only the corrections, i.e., the difference between the actual and predicted
vertex positions, are encoded. Similarly to the above-mentioned methods, our
method uses the base triangle together with information about vertex valences
and already decoded angles to generate the vertex position prediction. While
the prediction of the weighted parallelogram is given by an explicit equation, we
learn this prediction through a neural network (further denoted as a neural pre-
dictor). As a result, among other things, we are able to incorporate additional
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features that would be difficult to include in the weighted parallelogram. The
acquired correction vectors are then quantized and further compressed using an
arithmetic encoder.

3.1 Input Features

While training the neural network, it is necessary to properly describe the cur-
rent configuration, which is mainly determined by the positions of the vertices of
the base triangle but also by other available information about the already de-
coded geometry around the gate (edge over which a new vertex is encoded). For
the purposes of the neural predictor, it is convenient that this data is suitably
normalized in terms of its range. It is also desirable that the resulting feature
vectors are invariant to transformations that should not, in principle, affect the
shape of the predicted triangle. These are primarily rigid transformations (trans-
lation and rotation), but likewise, the description of the gate should be invariant
to uniform scaling, which we would expect to affect the size of the predicted
triangle in the same way, but not its shape.

A natural way of constructing feature vectors representing the shape of the
base triangle, which is also offered, given the other information used, is the inner
angles of the triangle. We can describe the shape of a base triangle using any two
inner angles. We choose the pair of angles α and β that lie next to the gate. The
shape of the predicted triangle can also be described by the two inner angles γ
and δ and the dihedral angle of the base and predicted triangle ω (see Figure 2).
Given these five features, it is possible to reconstruct the shape of both triangles.

Fig. 2. Diagram showing features describing the base and the predicted triangles.

In addition to the shape of the base of the triangle described by the inner
angles, the feature vectors contain information about the valence of the vertices
B, L, R and X. Since the mesh connectivity is encoded before the geometry, this
information is also available to the decoder side at the moment of computing the
prediction. In order to normalize the vertex valences ni of the i-th vertex, we
convert them to the relative angle ξi from the total angle 2π of a given vertex,
as shown in Eq. 2.
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ξi =
2π

ni
(2)

Another information used by the neural predictor is the angle estimation
based on the already decoded angles around the vertices B, L and R. The
feature vector contains the proportion ϵi of the difference between the angle 2π
and the sum of the k already decoded angles φj to the remaining number of
angles that have not yet been decoded, as shown in Equation 3.

ϵi =
2π −

∑k
j=1 φk

ni − k
(3)

To allow the neural predictor to work with the normal component of the
prediction by predicting the dihedral angle ω, the feature vector also contains
information about the curvature of the surface around the base triangle. This
information is represented by three angles. During mesh traversal, the vertex
normal is estimated at the mesh vertices as the average of the normals of the
adjacent triangles. These vertex normals nB , nL, nR of the base, left and right
vertices are then compared with the normal of the base triangle. At each pre-
diction, the angle between vertex normal and triangle normal is determined. We
denote these angles as normal angles (κB , κL, κR).

As a result, the neural predictor uses feature vectors x ∈ R2+4+3+2 as input
and predicts a triplet of angles based on which the predicted vertex y ∈ R3 is
reconstructed. The predictor neural network is then described by the function
Xpred : R2+4+3+2 → R3. Figure 3 shows a diagram with an outline of the
normalization of the input features and the computation of the coded correction.

(α, β)

(γ,δ,ω)

(εB,εL,εR)

Neural
predictor

Base triangle

(ξB,ξL,ξR,ξX)Valences

Known angles

XpredX -

correction

Encoder

(κB,κL,κR)Normal angles

Fig. 3. Diagram showing an outline of the normalization of the input features and the
computation of the coded correction.
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3.2 Optimization

The neural network that represents our neural predictor is a fully connected
feedforward network with 4 layers and 256 units in hidden layers. For the hid-
den layers, we use the ReLU activation function, and the output layer contains
a modified hyperbolic tangent activation function such that the range of values
matches the interval (0, 2π) (see Equation 4) given by the extreme values of
dihedral angle.

σ(x) = π · (tanh (x) + 1) (4)

The optimization algorithm Adam [10] with learning rate lr = 1 ·10−4 is used
to optimize the weights of the neural network. As a loss function for training the
neural network, we use the Mean Absolute Error between the predicted triplet of
angles (γpred, δpred, ωpred) and the true triplet of angles (γ, δ, ω) from the encoded
triangle (see Equation 5).

L =
1

n

n∑
i=1

(|γpred − γ|+ |δpred − δ|+ |ωpred − ω|) (5)

The neural predictor is trained on a dataset acquired from a wide range of
triangle meshes. The dataset is divided into the training and test sets. The train-
ing set is used to optimize the weights of the neural network. Part of the training
dataset is used as a validation set for the early stopping of the optimization pro-
cess. The test set is used to evaluate the rate-distortion measures. The test set
data are separated from the rest at the full-mesh level, so that data from the
meshes that were used by the neural network during learning are not used to
measure the accuracy of the neural predictor. The dataset consists of pairs of
base and predicted triangles that are found during the traversal of the meshes
during their compression.

For the validation set, a different loss function is used during learning than
for the training set. The validation set is not evaluated using the Mean Abso-
lute Error between the predicted and true angles but the Mean Absolute Error
between the coordinates of the predicted vertex position, which is reconstructed
based on the predicted angles, and the true coordinates of the encoded vertex.
This loss function better corresponds to the resulting corrections that are finally
encoded during the actual mesh compression (see Equation 6).

Lval =
1

n

n∑
i=1

∥Xpred(γpred, δpred, ωpred)−X∥1 (6)

3.3 Uncertainty prediction

In many connectivity-driven geometry compression methods, the order of en-
coded vertices is arbitrarily determined by the connectivity encoding method
used, such as Edgebreaker. Since the connectivity and geometry decoding can
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be done separately, there is no obstacle to choosing a different order of vertex
encoding that will lead to an improved bitrate.

We propose an uncertainty-driven traversal in which the order of the encoded
vertices is given by the estimated uncertainty of the prediction of the position of
the encoded vertex. The goal of this approach is first to encode the vertices that
are more likely to achieve a more accurate prediction and, therefore, necessitate
the encoding of shorter correction vectors. In addition, a single vertex can gener-
ally be encoded over different edges (gates) with varying degrees of uncertainty.
In this way, we are partially able to arrange shorter correction vectors before
longer ones in the output stream and also encode vertices over more convenient
gates.

Since the magnitude of the correction vectors is not normalized, it is neces-
sary to normalize them before training the neural network. The magnitude of
the correction vector can be expected to increase with the size of the triangle.
Therefore, we divide the magnitudes of the correction vectors by the square root
of the base triangle surface area. In turn, when the uncertainty is evaluated dur-
ing the encoding process, the output of the neural network is then multiplied by
that value:

e =
∥X−Xpred∥

1
2∥(L−B)× (R −B)∥

(7)

In order to be able to estimate the uncertainty of the coded vertex prediction,
we train a separate neural network u : R7 → R that uses the same feature vector
that is used for the vertex position prediction itself to predict the uncertainty,
which is correlated with the size of the correction vector. To optimize this neural
network, we use Concordance Correlation Loss [3], which is used to optimize the
correlation between ground-truth values and predicted values. It is defined as
1− Concordance Correlation Coefficient as shown in the following Equation:

Lunc = 1− 2ρeuσeσu

σ2
e + σ2

u + (µe − µu)2
, (8)

where e is the relative error in the prediction, u is estimated uncertainty, ρeu
denotes Pearson correlation coefficient, σ is the standard deviation, and µ is
a mean value. The structure of the uncertainty estimation neural network is
the same as the structure of the vertex position prediction network, except that
it contains a different activation function at the output, specifically the square
function.

For training the neural network estimating uncertainty, we use the same
data as for training the neural predictor. However, outliers are excluded from
this data. The filtering of outliers is done based on the Z-score of relative error e,
which is defined as the distance from the mean divided by the standard deviation.
For our purposes, we only keep samples with Z-scores less than 3. This helps to
provide a more stable learning process, as degenerated triangles (having zero
area) and nearly degenerated ones that are close to singular are removed in this
step.
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etrain =

{
e :

e− µe

σe
< 3

}N

i=1

(9)

When using uncertainty estimation, the encoding traversal is controlled by
a priority queue that contains the gates and their corresponding uncertainty esti-
mations. In each iteration, the gate with the minimum uncertainty is dequeued,
a new vertex is encoded, and then the uncertainty of the newly created gates is
estimated and enqueued.

4 Experimental Results

To evaluate the proposed neural predictor, we compare our method with the
implementation of the weighted parallelogram [22], a state-of-the-art single-rate
method for connectivity-driven compression of triangle meshes. We use the Mean
Squared Error (MSE) of mesh vertices, a commonly used metric for evaluating
mesh compression algorithms that do not modify mesh connectivity, to measure
mesh geometry distortion. In addition, we also use Dihedral Angle Mesh Er-
ror (DAME) [24], which is a perceptual metric that better correlates with how
humans perceive the distortion of the compressed mesh.

The proposed compression method was tested in a scenario of a general geom-
etry prediction, where the neural network of the predictor is trained for a general
triangle mesh. The weights of the neural network are then part of the encoder
implementation itself, and therefore, the encoder and decoder have these weights
available without having to be transferred through the stream with the encoded
mesh. For geometry prediction experiments, meshes from the ABC dataset [11]
were used. Since both weighted parallelogram, as a reference method, and our
proposed method require the input mesh to be orientable 2-manifold, meshes
that the reference implementation could not handle were filtered out from the
dataset.

We evaluated the rate-distortion function on the ABC dataset using the
two metrics mentioned above on 100 meshes that were not used in learning the
neural predictor, which was trained using 385 meshes. Figure 4 contains a rep-
resentative example of RD curves comparing the neural predictor and weighted
parallelogram. This graph shows the reduction of the data rate of the geome-
try using the proposed method over a large portion of the bitrate interval. To
compare the distortion of different compression methods at the same bitrate, an
RD-curve with sufficiently dense sampling was computed for each mesh, and the
desired bitrate was found by interpolating the RD-curve. These statistics were
measured for all mesh test sets containing 100 meshes, and the data rate was
compared with that of the weighted parallelogram. Figure 5 contains the average
relative improvement in bitrate of the neural predictor over the weighted paral-
lelogram over the entire test dataset. These experiments show that the proposed
method provides a better rate-distortion ratio for most of the test data.

To verify the contribution of the normal component prediction of the encoded
vertex, which is represented by the dihedral angle, we compared the performance
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Fig. 4. Representative comparison of RD curve weighted parallelogram and neural pre-
dictor on ABC dataset. The x-axis shows the bitrate of the compressed geometry
(excluding connectivity), and the y-axis contains the bias of the compressed mesh as
measured by the chosen metric. Top: MSE. Bottom: DAME.

of the same neural predictor with and without the normal component. This
experiment was evaluated across the entire test set of the ABC dataset. Figure
6 contains a plot of the relative distortion of the coded mesh versus the weighted
parallelogram measured using both MSE and DAME. These results show that
it is advantageous to include the normal prediction since without the prediction
of the normal component, no better results were obtained with respect to using
weighted parallelogram.

5 Conclusions

In this paper, a new single-rate method for geometry compression of triangle
meshes was proposed. The method uses an artificial neural network to predict
the mesh geometry based on its connectivity and the already decoded part of the
geometry around the vertex. The method uses principles similar to some existing
state-of-the-art methods, such as parallelogram prediction, prediction based on
the valence of mesh vertices, and estimation of interior angles of triangles.

The performed experiments show that the proposed method is able to achieve
a better ratio between bitrate and mesh distortion on a large dataset of static
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meshes than the tested state-of-the-art method, using both mechanistic and
perceptual metrics to assess mesh quality.

Although static mesh compression is already a well-researched area, it can be
seen that using modern machine learning approaches, such as neural networks,
can improve the existing state-of-the-art methods. In future work, it is possible
to try to improve the neural predictor further. It might be interesting to try
to incorporate other known local geometric properties of the compressed mesh
into the feature vectors of the neural predictor. At the same time, it is worth
exploring whether some of the global features could be used as latent code that
would be constant for all predictions within a single mesh, further helping to
improve the accuracy of the predictor. Global features describing meshes could be
particularly useful in compressing larger sets of meshes with similar properties,
such as sequences of triangle meshes with varying connectivity.
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Fig. 5. Comparison of the ratio of bitrate and distortion of compressed meshes of the
proposed method relative to weighted parallelogram. The x-axis shows the bitrate of the
compressed geometry (excluding connectivity), and the y-axis contains relative distor-
tion to the weighted parallelogram measured by the chosen metric. Relative distortion
smaller than one means lower distortion than the reference method. The chart contains
the average relative distortion values across the test dataset, and the length of the bar
corresponds to the variance of the relative distortion.
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