
Towards understanding time varying triangle
meshes

Jan Dvořák[0000−0003−4569−1151], Petr Vaněček[0000−0002−1858−2411], and
Libor Váša[0000−0002−0213−3769]

Department of Computer Science and Engineering, University of West Bohemia,
Pilsen, Czech Republic {jdvorak,pvanecek,lvasa}@kiv.zcu.cz

Abstract. Time varying meshes are more popular than ever as a rep-
resentation of deforming shapes, in particular for their versatility and
inherent ability to capture both true and spurious topology changes. In
contrast with dynamic meshes, however, they do not capture the tem-
poral correspondence, which (among other problems) leads to very high
storage and processing costs. Unfortunately, establishing temporal cor-
respondence of surfaces is difficult, because it is generally not bijective:
even when the full visible surface is captured in each frame, some parts
of the surface may be missing in some frames due to self-contact. We
observe that, in contrast with the inherent absence of bijectivity in sur-
face correspondence, volume correspondence is bijective in a wide class
of possible input data. We demonstrate that using a proper intitializa-
tion and objective function, it is possible to track the volume, even when
considering only a pair of subsequent frames at the time. Currently, the
process is rather slow, but the results are promising and may lead to a
new level of understanding and new algorithms for processing of time
varying meshes, including compression, editing, texturing and others.

Keywords: Time varying mesh · model · animation · tracking · analysis
· surface.

1 Introduction

Time Varying Meshes (TVMs) are appearing more commonly in recent years,
especially because of the improved methodology (hardware and processing) used
for acquiring 3D surface data at the required framerate. Photogrammetry in par-
ticular, supported by depth sensing technologies, such as time-of-flight cameras
and pattern projection scanning, have enabled capturing deforming shapes, such
as articulated human faces or whole bodies, with relative ease. Most of these ap-
proaches rely on a tight synchronization of the scanning devices, which allows
processing data at each time instant separately, making the TVM a natural
output format of the scanning process.

TVMs find application in a variety of fields, such as movie/gaming insdustry,
visualization, telepresence, live sport broadcasting and others, which take advan-
tage of the versatility of this representation. On the other hand, their application

2 J. Dvořák et al.

is limited by the large size of data needed for the representation: a common se-
quence lasting about a minute with 100k vertices in each frame takes on the
order of gigabytes to store/transmit. This is mainly because each frame carries
its own connectivity, which in many cases requires a portion of the overall bit
budget that is comparable with the geometry. In contrast with dynamic meshes,
which share the common connectivity, this is a major disadvantage, topped by
the general difficulty of exploiting the temporal coherence of the data exhibited
by the TVM representation.

Another hindrance inherent to TVMs is the missing temporal correspon-
dence. This makes certain common tasks, such as attaching an artificial prop to
the 3D model, difficult. Similarly, it is difficult to exploit the temporal coherence
of the surface albedo for efficient texturing using a shared map and image, since
the UV unwrapping (and thus the texture itself) must be different in each frame.

Extracting the temporal correspondence would make a great step towards
better understanding of the captured surface deformation. Typically, captured
performances frequently involve limbs being connected or merged with each other
or with the torso in the reconstruction. While human observers easily identify
such occurrences and distinguish them from true merging and/or deformation,
for automatic processing algorithms such distinction is difficult and leads to
problems when establishing the temporal correspondence.

The main issue is that surface correspondence is inherently not bijective: in
some (most) frames, certain parts of the surface are missing, even when the sur-
face is captured from all possible viewpoints, due to the self-contact. Typically,
parts of the surface may disappear for several frames and then eventually reap-
pear. It is even possible, that the whole of the surface is not completely visible
in any of the input frames.

Ideally, we would like to track the whole surface and add the invisible parts
that are in contact to the frames where they are not visible. Such approach could
allow for consistent, bijective correspondence tracking. Unfortunately, this is a
difficult problem, which could be visualized in a simplified 2D case of tracking
silhouettes, as shown in Fig. 1. The data in this case can be interpreted as a 3D
(2D + time) object, and the task translates to cutting the shape along certain
ridges in order to complete the silhouettes. Formulating the criteria for the cuts
seems difficult and such process is necessarily prone to errors.

Fig. 1. A Sequence of 2D silhouettes
interpreted as a 3D volume. Track-
ing the surface translates to cutting
the 3D object at the red locations.

Towards understanding time varying triangle meshes 3

Our main observation is that there is a different, orthogonal approach to the
problem, which eliminates much of the difficulty. Rather than tracking the sur-
face, we propose to track the volume of the captured objects. In many practical
scenarios, the overall volume changes negligibly, and it is possible to track it
bijectively over the length of the sequence. Splitting the volume into finite size
elements, it is much easier to formulate the criteria/priors for correct tracking:
the whole of the volume in each frame should be covered, and the volume el-
ements should move coherently. With volume correspondence, it is then much
easier to establish surface correspondence and eventually add the missing parts
of surface in any frame.

Our main contribution is a working volume tracking pipeline, verified on data
from multiple sources. The key ingredients are:

1. choice of appropriate representation
2. proper tracking initialization
3. formulation of objective function/energy

2 Related work

One could track the evolving surface by propagating certain canonical frame (e.g.
first frame) using a non-rigid alignment method. Such methods are usually based
on minimizing an energy which evaluates the quality of the alignment. However,
only the methods that do not require the correspondences information as an
input can be considered, since this information is not known a priori. Myronenko
et. al. [22,23] proposed to model the unknown correspondences using a Gaussian
mixture model, enforced the movement of points to be spatially smooth and used
the expectation-maximization algorithm to optimise the energy. Li et. al. [18]
also treat the correspondences as probability, however, they model the movement
of points using deformation graphs. In their subsequent work [2] this method was
utilized to track evolving surfaces. Yoshiyasu et. al. [31] constrain the underlying
deformation to be as-conformal-as-possible, i.e. preserving angles. Such property
preserves the structure of the deformed mesh. Utilizing the volume the surface
encloses was already considered in the past. Huang et. al. [12] proposed to use
centroidal voronoi tessellations with connection to signed distance function to
model volumetric features used in the alignment process. Tracking of surfaces
based on non-rigid alignment has, however, quite a few limitations. Such tracking
process unfortunately highly depends on the selection of the propagated frame
and might suffer from the error accumulation.

Compresssion of time-varying geometry, i.e. sequence of triangle meshes or
point clouds representing a surface with dynamic topology is a closely related
field of research in the sense that its main goal is to find a reduced representation
of the data. Quite a few methods utilizing the temporal coherence of the data
have been already proposed. The most common approach is to store the surface
in a spatial data structure (e.g. grid or octree) and exploit the coherence of oc-
cupancy of such structures between frames instead of the coherence of surfaces

4 J. Dvořák et al.

([7,8,10,16,21,26]). Inspired by video compression methods [5,9,17,20,24,30] use
motion compensation, where parts of the surface are predicted by parts of the
previous frame. However, such predictions are, in general, not correspondences
between frames. Since the video compression is a mature field of research, it is
also utilized in so-called geometry-video coding [11, 14, 25, 29], where the geom-
etry of the surface is mapped to a video, which is then compressed using the
spatio-temporal coherence in the image domain. The temporal coherence of the
surfaces themselves is exploited only in few methods. Yang et. al. proposed to
match the decimated frames [15]. Another approach is to utilize skeletal infor-
mation [6,19]. However, both approaches can be used only for data with constant
genus.

3 Algorithm overview

We assume that the input data take the form of TVM: a sequence of triangle
meshes captured at certain framerate, usually 25-30fps. Each frame consists of
a set of vertex positions representing the geometry, and a set of integer triplets,
representing the triangles forming the connectivity. While there is a certain inter-
frame coherence of the geometry, since the subsequent frames represent similar
deformations of the same shape, there is no coherence in the connectivity: it
is assumed to be completely independent in each frame. For simplicity, we also
assume that each input mesh is complete and watertight. Later we will discuss
how this assumption can be lifted without modifying much of the proposed
pipeline.

We aim at building a compact data structure that captures the temporal
development of the shape represented by the input TVM. The structure should
provide some form of temporal correspondence, which enables deeper insight
into the semantics of the shape, as well as more efficient processing of the input
data.

Our proposal is to represent the shape by a fixed number of points (denoted
centers), each representing a small volume surrounding it. The locations of the

centers will vary in time, their positions will be denoted cfi , representing the 3D
position of the i-th center in frame f .

In contrast with the difficulty of specifying conditions for proper surface data
structure, formulating the conditions for the volume elements is comparatively
easy. In particular, we wish the centers to

– cover all parts of the input object in each frame,
– be distributed evenly over the volume of the objects in each frame and
– move consistently between frames, i.e. nearby centers should move in similar

direction.

Such representation can be used in many applications. It allows reconstruct-
ing a surface with naturally changing genus (as described in section 10). It can
be used to track the surface and add parts missing due to self-contact. Note that

Towards understanding time varying triangle meshes 5

the data structure may also complement the original input instead of replacing
it: in particular, it can serve as a reference for compression purposes.

When determining the model parameters (center positions in each frame), we
will proceed frame by frame, considering only a pair of subsequent frames at the
time. On one hand, this restriction means that the algorithm is not exploiting all
the information that is available. On the other hand, such approach eventually
allows for online processing of the inputs, given that the size of the data and
processing power allows for real-time computations.

First, we will distribute the centers uniformly over each input shape, as will
be detailed in section 4. This ensures that every part of every frame will be
covered by the model.

Next, we proceed from a previous frame to the next. We determine the likely
correspondence using the Kuhn-Munkers (”hungarian”) method (section 5), and
then we optimize an objective function described in sections 6, 7 and 8, which
ensures a smooth, coherent inter-frame transition while preserving the sampling
uniformity.

4 Uniform object sampling

We will be sampling the volume occupied by the object in each frame, denoted
Vf , interpreted as an infinite set of points. A constant number of samples (cen-
ters) will be placed in each frame. In our experiments, 1000 centers worked well
as a compromise between representation accuracy and processing time. If more
centers are needed, it is easier to add them in post-processing, after the initial
batch has been tracked.

We aim at achieving a uniform distribution of the centers. As with many
similar problems, formulating the objective precisely goes a long way towards
finding the solution. In our case, a uniform distribution can be identified by
looking at the volumes that surround each center in certain sense. We may
define a cell associated to i-th center as the set of all points p ∈ Vf , such that
‖p − ci‖ ≤ ‖p − cj‖ for every j. Such structure is very similar to the Voronoi
cell of i-th center, with the only difference that it is limited to the volume Vf .
The sampling uniformity can be directly linked to the standard deviation of the
cell sizes.

The objective can be thus reformulated as minimizing the spread of cell sizes.
It is well known (and easy to see) that such objective can be achieved using
the Lloyd iteration algorithm, where in each iteration the centers are shifted
towards the center of mass of their associated voronoi cell, resulting in the so-
called Centroidal Voronoi Tesselation (CVT). In order to stop the centers from
diverging to infinity, the center of mass must be computed with respect to a
certain weight function, in our case it is the indicator function of the volume Vf .

Despite the similarity to Voronoi cells, finding the center of mass of the cells
associated with centers is not easy, since they are more general, potentially non-
convex and even non-continuous (see Fig. 2). Therefore we will opt for computing
the centers of mass quickly at the cost of certain approximation error.

6 J. Dvořák et al.

shape border

Fig. 2. Cells (shades of blue) associated with centers (green) can be non-convex and
even non-continuous, but they are always finite, which contrasts the Voronoi cells,
which are always convex, but often infinite.

The approach we choose is based on sampling the indicator function using
a regular volume grid. The indicator function that determines for each voxel
whether or not it lies within the volume occupied by the object is evaluated using
the ray-shooting technique, essentially evaluating the number of intersections
with the surface along a certain ray. Choosing axis aligned rays allows reusing
the previously computed intersection points for evaluating a whole column of the
regular sampling grid. Note that this is only possible for watertight models. A
more general approach could use the generalized winding number [13] instead of
the indicator function, possibly generalizing the algorithm to incomplete models,
however, at this point, we have not experimented with this possibility.

Centers are initialized randomly into cells of the regular volume grid where
the indicator function is positive. Next, we approximate the center of mass of
each center associated cell by averaging the positions those voxel centroids, that
have positive indicator function and the given center as its closest center. This
is done by a single pass over all voxels, searching for the nearest center using a
KD-tree. Finally, all centers are shifted to their respective associated centers of
mass.

As a result, we obtain a uniform sampling of each frame. Note that the
result strongly depends on the intialization ([3]), because the objective function
generally exhibits a broad basin of low values, with many shallow local minima.
We will exploit this property in the subsequent steps by regularizing the solution
using the smoothness term.

First, however, we need to initialize the inter-frame correspondences of cen-
ters, which we detail in the next section.

5 Initial correspondence estimation

The task at hand can be formulated as an optimal transport problem, with
certain cost function. We wish to find a mapping between the centers of the
previous (source) and current (target) frame, such that (i) corresponding points
are as close together as possible, (ii) each source point is associated to a unique

Towards understanding time varying triangle meshes 7

target point, or an affine combination thereof, and (iii) each target point is
associated to a unique source point, or an affine combination thereof.

Apart from spatial proximity, captured by simple length squared cost func-
tion, the transport cost should also reflect whether the trajectory connecting the
source and target points is located within the object, or passes outside, since the
latter often indicates that the correspondence involves center points that belong
to separate components or topologically distant locations (see Fig. 3). On the
other hand, in case of fast movement, even correct correspondences sometimes
pass ”outside” of the objects, and therefore such correspondences cannot be ig-
nored by the algorithm completely. Having the input sampled, it is relatively
easy to sample every possible trajectory and adjust the cost, so that segments
outside of the object are penalized: in our implementation, the penalization is
done by multiplying the proportional part of the cost outside of the object by
10, which is a constant that worked well in all our experiments.

The optimal transport task at hand can be solved using the Sinkhorn itera-
tions algorithm [4]. Each source center is associated to a weighted combination
of target points, which can be averaged using their weights to obtain a unique
corresponding center in the target frame. This approach has the advantage of
natural smoothing of the correspondences.

In our experiments, however, we have encountered difficulty with setting the
λ parameter of the Sinkhorn iterations algorithm. In essence, the parameter
controls the ”reach” of each center. When set too low, the algorithm does not
converge to a proper solution of the problem at hand (the mapping weights were
not affine), while setting it too high leads to a too poor approximation of the
solution, where each source center is associated with many target centers and
averaging them leads to shrinkage of the centers in the target frame. Unfortu-
nately, in many cases it is impossible to reach a compromise value that eliminates
both these effects.

Since the number of centers is constant in every frame, the problem can also
be formulated as a special case of the optimal transport: the optimal assignment,
where each source center is associated with exactly one target center. An optimal
solution can be found efficiently using the Kuhn-Munkers (”hungarian”) method.
However, in contrast with the Sinkhorn iterations, the result can be a very uneven
result (see Fig. 4), because of the lack of weighting and the random character
of sampling of each frame. This causes problems in the following steps, because
such state represents a local minimum of the objective function we are going to
minimize. Fortunately, this issue can be solved using a technique described next.

6 Smoothness energy, smoothing

One of our objectives is achieving a smooth movement of centers, i.e. that nearby
centers move in a similar direction. It is important to note that we do not wish to
penalize the amount of movement itself: it follows from the nature of the input
data that there is movement present in the sequence.

8 J. Dvořák et al.

Fig. 3. Red and green dots represent
different samplings of the same gray
domain. The blue correspondence lies
partially outside of the domain, and
thus should be penalized.

Fig. 4. Green and red dots represent
stationary points of the Lloyd algo-
rithm over the same square domain.
The blue lines represent the corre-
spondences as found by the Kuhn-
Munkers method, minimizing the sum
of squared distances.

The model can be interpreted as a vector field v defined over the domain Vf
of the source frame, sampled as v(ĉi) = ci − ĉi = vi, where ĉi is the position of
the i-th center in previous frame. The object of interest is the smoothness of this
vector field, which can be captured by its Laplacian ∆v. Smooth (harmonic)
vector fields exhibit zero length Laplacian, and the sum of the squared lengths
of ∆v at uniform sample points can be interpreted as the amount of deviation
from smoothness.

In our case, the vector field is sampled irregularly, which makes evaluating
its Laplacian harder, but not impossible. In particular, the discrete Laplacian
proposed by Belkin [1] can be used. This allows us to express an energy Es that
captures the smoothness of the vector field as follows:

Es =
∑
ĉi∈C

‖∆v(ĉi)‖2 =
1

|C|
∑
ĉi∈C

‖
∑
ĉj∈C

Ht(ĉi, ĉj)(vj − vi)‖2, (1)

where Ht(x,y) = 1

(4πt)
5
2
e−
‖x−y‖2

4t is a Gaussian kernel with parameter t. Gradi-

ent of such energy consists of following partial derivatives:

∂Es
∂vk

=
∂Es
∂ck

=
8

|C|2
∑
ĉi∈C

(Ht(ĉk, ĉj))
2(vk − vj) (2)

=
8

|C| · (8πt) 5
2

1

|C|
∑
ĉj∈C

H
t
2 (ĉk, ĉj)(vk − vj) (3)

= − 8

|C| · (8πt) 5
2

∆̂v(ĉk), (4)

Towards understanding time varying triangle meshes 9

where ∆̂ is a discrete Laplacian defined with half the kernel width of ∆.

7 Sampling energy

Apart from smoothness, we also need to preserve the uniform density of sam-
pling. As discussed before, this property can be quantified as

Eu =
1

2

∑
ci∈C

‖mi − ci‖2, (5)

where mi is the center of mass of a cell associated with i-th center.
Treating the centers of mass as constants, the gradient consists of following

partial derivatives:
∂Eu
∂ci

= mi − ci. (6)

The location of each center of mass mi can be approximated as described in
section 4.

8 Overall energy

Having the two energy terms that we wish to minimize, the tracking can be
formulated as minimization of the overall energy E = Es + αEu, where α is a
weighting constant. Having the gradient of both terms expressed in equations
4 and 6, such minimization can be done using the standard gradient descent
technique, i.e. in a series of steps, the centers are shifted in the direction of the
sum of the two gradients. The procedure is terminated after a set maximum of
iterations has been performed, or when the gradient is sufficiently small for each
ci.

8.1 Pre-smoothing

Note that the initial result of the Kuhn-Munkers method naturally represents
a local minimum of Eu, since it maps the centers of the source frame directly
to the centers of target frame, which have been optimized for uniformity during
initialization. This is somewhat unfortunate, because the gradient of Es is often
not strong enough to exit the local minimum.

This issue could be addressed by a smooth variation of the weighting param-
eter α, starting with a stronger influence of Es and then gradually increasing the
influence of Eu. Such approach, however, leads to problems with formulating the
stopping condition, because it enforces a certain number of iterations in order
to reach the final ratio of term influences.

In our experiments, we have therefore used a different empirical approach:
we start with a few iterations (50 worked well with our data) that only consider
Es, which lead the optimization out of the local minimum, and then we continue

10 J. Dvořák et al.

with the full energy E, using a constant value of α. This way, we can stop the
iteration whenever the gradient is small enough (smaller than 0.1 mm in each
component in our experiments), since the energy expression does not change
during the descent.

9 Results

We have tested the proposed algorithm on data from two sources: a commercially
available TVM sequence of professional quality (denoted casual man), and a pair
of sequences provided for academic purposes (denoted samba and handstand),
consisting of mesh sequences of constant connectivity [28]. Note that even though
the second dataset consists in fact of dynamic meshes rather than TVMs, we
do not exploit this fact and treat the datasets as if they were TVMs. Table 1
summarizes some basic properties of the used input datasets.

Table 1. Datasets used in experiments.

Dataset no. of frames (average) no. of vertices uncompressed size (.obj)[MB]

casual man 546 36 145 4 086

samba 175 9 971 113

squat 250 10 002 159

Using a volume grid of 512 cells along the longest dimension and a stopping
condition of 0.1mm in each component of the gradient descent direction, we have
processed the casual man dataset at 30.7s per frame on average. This framerate
was achieved using a purely CPU implementation written in C#, including all
the necessary steps (volume grid sampling, initial point distribution, energy min-
imization). We have used a common Intel Core-i7 9700 CPU. As for the other
datasets, the processing time per frame was only slightly shorter, because most
of the processing cost depends on the resolution of the volume grid, which was
constant over all the experiments. The results are shown in Fig. 5. The means of
quantifying the tracking quality naturally depends on the particular application,
some of which we discuss next.

10 Applications

It is possible to interpret the resulting model as an approximate representation
of the input deformable surface. A mesh can be extracted from the set of centers
in each frame by extracting the iso-surface of an appropriately designed function
that represents the distance from the centers, ideally blended in some way. One
particular choice is using

f(x) = −ln
(∑

ci∈C
exp
(
− k(‖ci − x‖ − r)

))
/k, (7)

Towards understanding time varying triangle meshes 11

Fig. 5. Tracking results, showing the first, middle and last frame for each sequence.
Coloring is done by the first three principal trajectory coefficients, notice the consis-
tency of the coloring throughout the sequence.

where r is a minimum radius of sphere surrounding each center and k is a
parameter influencing the blending distance. The function is sampled using a
regular grid and its iso-surface can be extracted using a standard technique,
such as marching cubes. The resulting triangle mesh can be compared with
the input using some tessellation oblivious metric, such as the mean nearest
inter-surface distance. Fig. 6 shows the resulting Hausdorff distances for the
casual man sequence, using 1000, 2000 and 4000 centers.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 100 200 300 400 500

m
e

a
n

 i
n

te
r-

su
rf

a
c
e

 d
is

ta
n

c
e

 [
m

]

frame #

1000 centers

2000 centers

4000 centers

Fig. 6. Mean inter-mesh distances for
the casual man dataset.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

c
u

m
m

u
la

v

e
 r

e
la

v

e
 c

o
e

ffi
c
ie

n
t

s
u

m

of basis vector

Fig. 7. Cummulative sums of coeffi-
cient magnitudes. 90% of coefficients
are captured by the first 50 eigenvec-
tors, 99% are captured by 346 eigen-
vectors.

We also observe that the trajectories of the centers are located in a small
subspace of the full space of trajectories. A basis of the space can be found
using PCA, similarly to what has been previously done for vertex trajectories
in dynamic meshes [27]. A reduced basis can be used to capture most of the
variance present in the data, leading to even more efficient representation. Fig. 7
shows the cumulative relative sums of coefficient magnitudes, showing that most
of the variance is concentrated with the first few eigenvectors.

12 J. Dvořák et al.

The model can also be used as a compressed version of the input data. Storing
the complete data needed for reconstruction, i.e. 1000 trajectories, using 32-
bit floats for coordinates, amounts to roughly 6MB of data for the casual man
sequence. Projecting onto the most important eigentrajectories, it is possible
to reduce the amount data down to about 2MB without sacrificing the quality.
Should a TVM be compressed down to equivalent size, each frame must be stored
in no more than 3.7kB. Current state of the art compression techniques require
about 16 bits per vertex, i.e. each frame must be simplified from the original 36k
vertices down to 1830, which necessarily drastically degrades the visual quality.

11 Conclusions

We have described a volume tracking algorithm for analyzing Time-Varying
meshes. It is based on simple energies, yet it produces feasible results, both
perceptually and numerically, despite the fact that the tracking is done using
the information from only a pair of subsequent shapes. As far as we know, there
is currently no competing method that is able to analyze a sequence of meshes
with the generality and precision provided by our method.

This result can find many applications. The resulting model can be used to
analyze the deforming bodies: it captures the nature of the deformation, it allows
tracking volumes even when they visually merge with others or get occluded or
hidden.

In the future, we would like to work on speeding the process up, potentially
using a GPU implementation of some of the time consuming steps. Additionally,
we would like develop means increasing the number of tracked volumes, yielding a
finer representation. We believe that with a proper initialization provided by the
proposed method, tracking additional volumes should be manageable. Finally,
we would like to better analyze the relations of the centers, building some kind of
connectivity that captures which volumes move together and how. Having such
structure could in turn help with further improving the tracking.

12 Acknowledgement

This work was supported by the project 20-02154S of the Czech Science Founda-
tion. Jan Dvořák was also partially supported by the University specific student
research project SGS-2019-016 Synthesis and Analysis of Geometric and Com-
puting Models. The authors thank Diego Gadler from AXYZ Design, S.R.L. for
providing the test data.

References

1. Belkin, M., Sun, J., Wang, Y.: Discrete laplace operator on meshed surfaces. In:
Proceedings of the Twenty-Fourth Annual Symposium on Computational Geome-
try. p. 278–287. SCG ’08, Association for Computing Machinery, New York, NY,
USA (2008)

Towards understanding time varying triangle meshes 13

2. Bojsen-Hansen, M., Li, H., Wojtan, C.: Tracking surfaces with evolving topology.
ACM Trans. Graph. 31(4) (Jul 2012)

3. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initial-
ization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1),
200–210 (2013)

4. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. In:
Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.)
Advances in Neural Information Processing Systems. vol. 26, pp. 2292–2300. Cur-
ran Associates, Inc. (2013)

5. de Queiroz, R.L., Chou, P.A.: Motion-compensated compression of dynamic vox-
elized point clouds. IEEE Transactions on Image Processing 26(8), 3886–3895
(2017). https://doi.org/10.1109/TIP.2017.2707807

6. Doumanoglou, A., Alexiadis, D.S., Zarpalas, D., Daras, P.: Toward real-
time and efficient compression of human time-varying meshes. IEEE Trans-
actions on Circuits and Systems for Video Technology 24(12) (2014).
https://doi.org/10.1109/TCSVT.2014.2319631

7. Garcia, D.C., de Queiroz, R.L.: Context-based octree coding for point-cloud video.
In: 2017 IEEE International Conference on Image Processing (ICIP). pp. 1412–
1416 (2017). https://doi.org/10.1109/ICIP.2017.8296514

8. Garcia, D.C., Fonseca, T.A., Ferreira, R.U., de Queiroz, R.L.: Geome-
try coding for dynamic voxelized point clouds using octrees and multi-
ple contexts. IEEE Transactions on Image Processing 29, 313–322 (2020).
https://doi.org/10.1109/TIP.2019.2931466

9. Han, S., Yamasaki, T., Aizawa, K.: Time-varying mesh compression us-
ing an extended block matching algorithm. IEEE Transactions on Cir-
cuits and Systems for Video Technology 17(11), 1506–1518 (2007).
https://doi.org/10.1109/TCSVT.2007.903810

10. Han, S., Yamasaki, T., Aizawa, K.: Geometry compression for time-varying meshes
using coarse and fine levels of quantization and run-length encoding. In: 2008
15th IEEE International Conference on Image Processing. pp. 1045–1048 (2008).
https://doi.org/10.1109/ICIP.2008.4711937

11. Hou, J., Chau, L., He, Y., Magnenat-Thalmann, N.: A novel com-
pression framework for 3d time-varying meshes. In: 2014 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). pp. 2161–2164 (2014).
https://doi.org/10.1109/ISCAS.2014.6865596

12. Huang, C., Allain, B., Franco, J., Navab, N., Ilic, S., Boyer, E.: Vol-
umetric 3d tracking by detection. In: 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 3862–3870 (2016).
https://doi.org/10.1109/CVPR.2016.419

13. Jacobson, A., Kavan, L., Sorkine, O.: Robust inside-outside segmentation using
generalized winding numbers. ACM Trans. Graph. 32(4) (2013)

14. Jang, E.S., Preda, M., Mammou, K., Tourapis, A.M., Kim, J., Graziosi,
D.B., Rhyu, S., Budagavi, M.: Video-based point-cloud-compression stan-
dard in mpeg: From evidence collection to committee draft [standards
in a nutshell]. IEEE Signal Processing Magazine 36(3), 118–123 (2019).
https://doi.org/10.1109/MSP.2019.2900721

15. Jeong-Hyu Yang, Chang-Su Kim, Sang-Uk Lee: Semi-regular representation and
progressive compression of 3-d dynamic mesh sequences. IEEE Transactions on Im-
age Processing 15(9), 2531–2544 (2006). https://doi.org/10.1109/TIP.2006.877413

14 J. Dvořák et al.

16. Kammerl, J., Blodow, N., Rusu, R.B., Gedikli, S., Beetz, M., Steinbach,
E.: Real-time compression of point cloud streams. In: 2012 IEEE In-
ternational Conference on Robotics and Automation. pp. 778–785 (2012).
https://doi.org/10.1109/ICRA.2012.6224647

17. Kathariya, B., Li, L., Li, Z., Alvarez, J.R.: Lossless dynamic point
cloud geometry compression with inter compensation and traveling sales-
man prediction. In: 2018 Data Compression Conference. pp. 414–414 (2018).
https://doi.org/10.1109/DCC.2018.00067

18. Li, H., Sumner, R.W., Pauly, M.: Global correspondence optimization for non-rigid
registration of depth scans. In: Computer graphics forum. vol. 27, pp. 1421–1430.
Wiley Online Library (2008)

19. Lien, J.M., Kurillo, G., Bajcsy, R.: Multi-camera tele-immersion system with real-
time model driven data compression. The Visual Computer 26(1), 3 (2010).
https://doi.org/10.1007/s00371-009-0367-8

20. Mekuria, R., Blom, K., Cesar, P.: Design, implementation, and evalua-
tion of a point cloud codec for tele-immersive video. IEEE Transactions
on Circuits and Systems for Video Technology 27(4), 828–842 (2017).
https://doi.org/10.1109/TCSVT.2016.2543039

21. Milani, S., Polo, E., Limuti, S.: A transform coding strategy for dynamic
point clouds. IEEE Transactions on Image Processing 29, 8213–8225 (2020).
https://doi.org/10.1109/TIP.2020.3011811

22. Myronenko, A., Song, X.: Point set registration: Coherent point drift. IEEE trans-
actions on pattern analysis and machine intelligence 32(12), 2262–2275 (2010)

23. Myronenko, A., Song, X., Carreira-Perpinán, M.A.: Non-rigid point set registra-
tion: Coherent point drift. In: Advances in neural information processing systems.
pp. 1009–1016 (2007)

24. Santos, C.F., Lopes, F., Pinheiro, A., da Silva Cruz, L.A.: A sub-
partitioning method for point cloud inter-prediction coding. In: 2018 IEEE
Visual Communications and Image Processing (VCIP). pp. 1–4 (2018).
https://doi.org/10.1109/VCIP.2018.8698661

25. Schwarz, S., Sheikhipour, N., Fakour Sevom, V., Hannuksela, M.M.: Video coding
of dynamic 3d point cloud data. APSIPA Transactions on Signal and Information
Processing 8, e31 (2019). https://doi.org/10.1017/ATSIP.2019.24

26. Thanou, D., Chou, P.A., Frossard, P.: Graph-based compression of dynamic 3d
point cloud sequences. IEEE Transactions on Image Processing 25(4), 1765–1778
(2016). https://doi.org/10.1109/TIP.2016.2529506

27. Váša, L., Skala, V.: Coddyac: Connectivity driven dynamic mesh compression. In:
3DTV Conference Proceedings (2007)

28. Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from
multi-view silhouettes. ACM Trans. Graph. 27(3), 1–9 (Aug 2008)

29. Xu, Y., Zhu, W., Xu, Y., Li, Z.: Dynamic point cloud geometry compression via
patch-wise polynomial fitting. In: ICASSP 2019 - 2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). pp. 2287–2291 (2019).
https://doi.org/10.1109/ICASSP.2019.8682413

30. Yamasaki, T., Aizawa, K.: Patch-based compression for time-varying meshes. In:
2010 IEEE International Conference on Image Processing. pp. 3433–3436 (2010).
https://doi.org/10.1109/ICIP.2010.5652911

31. Yoshiyasu, Y., Ma, W.C., Yoshida, E., Kanehiro, F.: As-conformal-as-
possible surface registration. Computer Graphics Forum 33(5), 257–267 (2014).
https://doi.org/https://doi.org/10.1111/cgf.12451

