
Geometry Compression of Triangle Meshes Using a Reference Shape

Eliška Mourycová a and Libor Váša b

Department of computer science and engineering, University of West Bohemia, Univerzitnı́ 8, Plzeň, Czech Republic
{emouryc, lvasa}@kiv.zcu.cz

Keywords: Compression, Triangle Mesh, Encoding, Geometry

Abstract: Triangle mesh compression is an established area, however, some of its special cases are yet to be investigated.
This paper deals with lossy geometry compression of manifold triangle meshes based on the EdgeBreaker
algorithm using a reference shape known to both the encoder and the decoder. It is assumed that the shape of
the reference object is similar to the shape of the mesh to be encoded. The predictions of vertices positions
are done extrinsically, i.e. outside the reference shape, and then orthogonally projected onto its surface. The
corrections are encoded by two integer numbers, denoting the layer order and an index of a hexagon in a
hexagonal grid generated on the surface of the reference shape centered at the prediction point. The availability
of a reference mesh results in a smaller bitrate needed for comparable error when compared to a state of the
art static mesh compression algorithm using weighted parallelogram prediction.

1 INTRODUCTION

While triangle mesh compression is a mature field
with numerous applications, there are still certain spe-
cial cases that remain unexplored. One particular
open question is how to efficiently exploit a shape ref-
erence that is available at both the encoder and the
decoder. This scenario occurs in practical applica-
tions, such as quality check scanning or compression
of time-varying meshes.

In quality check scanning, certain item is being
produced and 3D scanned at the end of a production
line in order to verify its quality. Apart from direct
analysis, the scans are commonly saved for further
processing/reference, which may be costly with high
volume production. At the same time, most of the
scans represent a very similar shape, and in most prac-
tical cases, even a perfect shape reference is available
in the form of a CAD model of the produced item.

A similar situation occurs when encoding a se-
quence of meshes representing an animation, i.e. a
continuous deformation of a certain shape. When an-
imations are created artificially, the frames usually
share connectivity (dynamic mesh), and such data can
be compressed very efficiently even when the anima-
tion structure (bone rig or similar) is unknown (Chen
et al., 2018). When scanning a real world dynamic
scene, on the other hand, a series of meshes with

a https://orcid.org/0000-0001-9379-4097
b https://orcid.org/0000-0002-0213-3769

varying connectivity (time-varying mesh) is often ob-
tained, making the need for efficient storage more
acute, yet at the same time making the actual com-
pression much more difficult. One way to deal with
the problem is to compress the frames sequentially,
using each previous frame (possibly warped in a cer-
tain way) as a reference for compression of each fol-
lowing frame.

The problem at hand is therefore as follows: a
coder and a decoder share a shape, represented as a
triangle mesh, denoted reference mesh. The task is to
transmit another shape, again represented by a trian-
gle mesh, from the encoder to the decoder. This input
mesh has a shape that is very similar to the reference
shape, however, it has a completely different tessel-
lation, and possibly even different topology (genus).
The objective is to encode the input mesh using as
few bits as possible, using the shared knowledge of
the actual shape that is being transmitted.

At first sight, this may look like a low hanging
fruit: information that is available at a decoder can be
omitted from the transmission, providing an improved
compression performance. It may even seem that the
decoder already has all the information it needs, since
it has the shape available, however, additional infor-
mation is certainly needed, since the mesh represen-
tation captures not only the shape of the model, but
also its sampling, i.e. tessellation, since in our sce-
nario, we wish to preserve the connectivity of the in-
put mesh. How much of the bitrate commonly used



for encoding a triangle mesh is spent on the actual
shape, and how much is spent on capturing the partic-
ular tessellation, is generally not known, and attempt-
ing to fruitfully exploit the shape reference in order
to reduce the data rate with respect to no-reference
encoder turns out to be a surprisingly difficult task.

We present an algorithm based on traversing the
input mesh and predicting vertex positions one by
one. In order to make the prediction, we use the ref-
erence mesh. Our algorithm works with projections
of predicted and encoded vertices onto the surface of
the reference mesh. The difference between the pre-
diction and the actual position (also known as correc-
tion) is encoded intrinsically, restricting the possible
locations to the 2D reference surface and, most im-
portantly, using only two coordinates. Finally, rather
than using a rectangular grid in order to quantize the
coordinates, we use a hexagonal grid that has better
properties in terms of quantization error.

The rest of the paper is structured as follows:
Section 3 describes the overall process of encoding
a mesh, including requirements imposed on the input
shapes and steps taken to preprocess the data. Section
4 then in detail describes three relatively independent
modules used for the assembly of the encoding algo-
rithm. Section 5 is devoted to the evaluation of the
performance of the proposed method and its compar-
ison with an alternative static mesh encoder.

2 RELATED WORK

Compression of polygonal meshes, and of triangle
meshes in particular, is a field that has been actively
studied for several decades. The problem can be fur-
ther split to compression of connectivity, which is al-
ways understood as lossless, and compression of ge-
ometry (vertex positions), where mostly lossy algo-
rithms are employed, sacrificing reconstruction preci-
sion in order to achieve a more efficient compression.

For connectivity compression, it is known that as-
suming that every possible triangulation is equally
probable, at least 3.245 bits per vertex (bpv) are
needed in the limit for genus 0 triangle meshes(Tutte,
1962). A guarantee of 4 bpv is provided by the Edge-
Breaker algorithm(Rossignac, 1999), which can be
further improved by employing a more efficient en-
tropy coding. Further improvement is achieved by
valence based encoders(Alliez and Desbrun, 2001),
assuming that regular connectivities with vertex va-
lences close to 6 are more probable than others, reach-
ing data rates of 1-2 bpv for common datasets.

For geometry compression, the most common ap-
proach that complements the EdgeBreaker connectiv-

ity coder well is the parallelogram prediction(Touma
and Gotsman, 1998). Whenever a new vertex is en-
countered during the EdgeBreaker traversal, its posi-
tion is predicted by forming a parallelogram from a
known neighbouring triangle. Next, rather than en-
coding the quantized coordinate, only a correction
vector which represents the difference between the ac-
tual and predicted position is stored reaching a lower
entropy and thus a lower bitrate.

This approach has been further improved by en-
coding the geometry in a separate pass, when the full
connectivity is known to both the encoder and the de-
coder. This allows adjusting the shape of the paral-
lelogram stencil according to the degrees of vertices
involved in the prediction(Váša and Brunnett, 2013).

Other approaches to geometry encoding have been
proposed as well, building on concepts such as ex-
pressing the geometry in delta coordinates (Sorkine
et al., 2003), known as high-pass coding (HPC) or
expressing the shape in the frequency domain(Valette
and Prost, 2004). These often lead to different char-
acter of introduced distortion, targeting at perceptual
quality metrics(Corsini et al., 2013). Recently, a mod-
ification of the HPC has been proposed, which al-
lows achieving competitive results in terms of both
traditional error metrics, such as mean squared er-
ror or Hausdorff distance, as well as perceptual met-
rics(Váša and Dvořák, 2018).

Finally, a range of algorithms has been proposed
aiming at various particular desirable properties of
mesh transmission, such as the possibility of par-
tial decoding(Hoppe, 1996), encoding of mesh se-
quences of shared connectivity(Chen et al., 2018) or
joint encoding of meshes with color or texture in-
formation(Caillaud et al., 2016). Our paper fits into
this last category, focusing on a special case scenario
when a reference mesh is available.

3 ALGORITHM DESCRIPTION

This section describes the steps to encode (compress)
the input mesh. The algorithm works under the as-
sumption that both the encoder and the decoder have
the same reference mesh, whose shape is similar to
that of the input mesh. However, the sampling of the
surfaces can be completely different.

3.1 Input Data

There are certain conditions that both the original and
the reference mesh must meet, in particular:

• both meshes must be manifold,



• all triangles in both meshes must be equally ori-
ented, i.e. all clockwise or all counterclockwise,

• the meshes cannot contain degenerate triangles,
i.e. triangles with zero area.

3.2 Preprocessing

Before the encoding algorithm is launched, two pre-
processing steps are done - a Bounding Volume Hier-
archy (BVH) tree for the reference mesh (as described
in section 4.2.4) is built, and the neighbors for each
triangle in both the original and the reference mesh
are found and stored.

The triangles’ neighbors are stored in a hash ta-
ble, where the keys are oriented edges of triangles,
i.e. such structures which keep the index of the start-
ing vertex and the index of the end vertex. The hash
table is filled by iterating through all triangles of the
mesh and adding all three edges as keys with the same
value - the current triangle.

3.3 Encoding

To start encoding the mesh, the first triangle of the
original mesh is projected onto the surface of the ref-
erence mesh (using orthogonal projection described
in section 4.2.4). The vertices of the projected trian-
gle are updated to match the projected positions.

The encoding algorithm then follows the steps of
the EdgeBreaker algorithm. If the code “C” was to be
encoded during the EdgeBreaker algorithm, i.e. the
next vertex behind a prediction gate has not been con-
quered, then the encoder does the following steps:

1. project the tip vertex from the input mesh onto the
reference mesh,

2. evaluate the prediction (see subsection 4.1 for de-
tails on how predictions are made),

3. construct the correction by generating a hexago-
nal grid on the reference surface and finding the
hexagon centre that lies closest to the projected
tip,

4. replace the tip vertex position in the input mesh
by the nearest hexagon centre (in order to keep
the encoder in sync with the decoder for following
predictions),

5. save the correction (i.e. identification of the near-
est hexagon) into the data stream - two values are
needed, the layer order and the index in the layer,
as will be described in more detail later.

The connectivity of the encoded mesh stays the
same as in the input mesh.

There are two sources of precision loss in the pro-
cedure: first, the difference between the actual vertex

position and its projection onto the reference mesh is
neglected and not rectified in the decoder. This can
be fixed using an additional correction layer, however,
we choose not to include such correction in order to
evaluate the algorithm assuming that this error is neg-
ligible. The other source of distortion is the quanti-
zation by the hexagon grid on the reference surface.
This error can be controlled by adjusting the hexagon
edge length.

4 MODULES

This section describes in detail parts of the algorithm
which are then used for the mesh compression.

4.1 Prediction of the Vertex Position

The predictions are made using an extrinsic parallel-
ogram prediction (see Fig. 1).

Figure 1: Paralellogram prediction.

In Fig. 1, point A is a vertex known to both en-
coder and decoder, points B and C form the current
gate in the EdgeBreaker procedure, point P is the pre-
dicted point, point V is the actual (projected in step
1.) position of the point and vector r⃗ is the correction
vector (encoded by the hexagon layer and index).

Point P is acquired as P = B+C−A. Such point
does not always lie on the surface of the reference
mesh, therefore it is projected onto it - hence the term
extrinsic prediction.

4.2 Orthogonal Projection of Points
onto the Surface

Another required part of the solution is a method ca-
pable of orthogonally projecting points onto the sur-
face of a mesh. This is used for projecting vertices
of the original mesh onto the surface of the reference
mesh and acquiring projections of the predictions of
the vertices of the input mesh.
To avoid a brute force approach, i.e. iterating through
all of the triangles of the reference mesh and check-
ing which is the closest one to the given query point,
a BVH tree is constructed.



4.2.1 Building a BVH Tree

The tree is built as a binary tree. Each node of the
tree holds a list of triangles it contains, references to
its parent, children and their bounding box. The con-
struction steps are:

1. Create a queue of tree nodes and enqueue the root
node

• The root node contains all triangles in the mesh,
its bounding box is the same as that of the
whole mesh and it has no parent.

2. If the queue is empty, then break
3. Dequeue a node into currNode

4. If currNode is not a leaf node, create its two chil-
dren

• See subsection 4.2.2 for details

5. Enqueue both children and go to 2.

4.2.2 Creating Children of a Tree Node

Children of a node are created by splitting the parent’s
bounding box along its longest side. The parent’s list
of triangles is sorted by the x,y or z position of the
triangles’ centroids (depending on which side of the
bounding box was the longest). The first half of the
sorted triangles is assigned to the first child and the
second half to the second child. New (sub-)bounding
boxes are calculated for both children. If the chil-
dren’s triangle count is less than or equal to 2, then a
flag labeling them as leaf nodes is set to true for them.

4.2.3 Using the BVH Tree for Orthogonal
Projection

Using the tree to locate the nearest triangle to a given
query point is done as follows:

1. Start in the root node of the tree
2. Go to the child node whose bounding box centre

is closer to the query point
3. When a leaf node is reached, distances to its trian-

gles are evaluated and the minimum saved as d

• See section 4.2.4 for details on projecting a
point into a triangle

4. Traverse upwards from the leaf node and consider
whether a different (unvisited) branch needs to be
visited

• A branch does not need to be visited if the
query point lies outside the bounding box, fur-
ther than d from at least one of its faces

5. If a leaf node is reached again, d is updated if a
closer triangle is found

6. Continue until traversing leads back to the root
node

7. Return the closest found triangle (with distance d
from the query point)

4.2.4 Projection of a Point into a Triangle

Projecting the query point into a triangle is done by
first projecting the point onto the plane of the triangle:

u⃗ =V1 −V0, v⃗ =V2 −V0

n⃗ = u⃗× v⃗
w⃗ = Q−V0

γ =
u⃗× w⃗ · n⃗

n⃗ · n⃗

β =
w⃗× v⃗ · n⃗

n⃗ · n⃗
α = 1− γ−β,

where V0, V1 and V2 are the vertices of the triangle and
Q is the query point to be projected. γ,β,α are then
barycentric coordinates of the projected point with re-
spect to the given triangle. If

β < 0 ∨ γ < 0 ∨β+ γ > 1, (1)

then the projected point is outside of the triangle. In
this case we project the point onto the edges:

e⃗v =Vi −V(i+1)%3

v⃗v = P−Vi

C = P−Vi +
e⃗v · v⃗v
e⃗v · e⃗v

e⃗v,

where Vi is one of the vertices of the triangle, P is the
point projected onto the plane given by the triangle
and C is the point projected onto a line given by one
of the edges.

If C lies between the two vertices of the triangle
which defined the line, then the distance between P
and C is computed and saved as d. d is updated if a
smaller distance is found.

After all edges are checked, distances to the trian-
gles vertices are computed individually and d is up-
dated if necessary. A point on the triangle with found
minimal distance d is finally returned.

4.3 Straight Walk on the Surface

One of the needed parts of the algorithm is a method
for moving along a geodesic line on the surface of a
mesh from a starting point in a given direction, until a
desired distance is reached. This part of the solution
is used for the hexagonal grid generation on the sur-
face of the reference mesh.



The starting point of the walk is described in barycen-
tric coordinates. For storing the barycentric coordi-
nates, we only need two values. The conversion from
barycentric to cartesian coordinates is done using the
following formulas:

cPtx =V x
0 +bPtx(V x

1 −V x
0 )+bPty(V x

2 −V x
0 )

cPty =V y
0 +bPtx(V y

1 −V y
0 )+bPty(V y

2 −V y
0 )

cPtz =V z
0 +bPtx(V z

1 −V z
0 )+bPty(V z

2 −V z
0 ),

where cPt is a 3D point in cartesian coordinates, bPt
is the barycentric point to convert to cartesian coordi-
nates and V0,V1,V2 are the vertices of the triangle in
which the barycentric point lies.

4.3.1 Determining the Walking Direction

First, a direction in which to walk is determined. Ei-
ther a vector is specified, in which case this vector is
used as the direction. If none is given, then a default
reference direction is chosen as a vector going from
the starting point to the first vertex of the starting tri-
angle. If such vector is a zero vector, then a vector
going from the starting point to the second vertex of
the starting triangle is chosen instead.
This algorithm computes the direction in the coordi-
nate system of the triangle in which it is currently op-
erating (analogically to barycentric coordinates of a
point).

For conversion from triangle to cartesian direction
coordinates, following formulas are used:

cDirx = tDirx(V x
1 −V x

0 )+ tDiry(V x
2 −V x

0 )

cDiry = tDirx(V y
1 −V y

0 )+ tDiry(V y
2 −V y

0 )

cDirz = tDirx(V z
1 −V z

0 )+ tDiry(V z
2 −V z

0 ),

where cDir is a direction (vector) in cartesian coor-
dinates, tDir is the direction in the triangle coordi-
nate system to convert to cartesian coordinates and
V0,V1,V2 are the vertices of the triangle in which the
direction is specified.

4.3.2 Finding the Intersected Edge

Next, an edge which will be intersected by walking
straight to the border of the current triangle is found.
This is done by calculating signed distances to all the
edges using the triangle coordinate system direction.

The distances are computed as follows:

d1 =

{
−bPty

tDiry , if tDiry ̸= 0
−1, otherwise

d2 =

{
1−bPtx−bPty

tDirx+tDiry , if tDirx + tDiry ̸= 0
−1, otherwise

d3 =

{
−bPtx

tDirx , if tDirx ̸= 0
−1, otherwise,

where d1 is the signed distance to the edge between
vertices V0 and V1, d2 is the signed distance to the
edge between vertices V0 and V2 and d3 is the signed
distance to the edge between vertices V2 and V1.

The smallest positive distance is found and the
edge of this distance is identified as the edge to be
intersected. If no edge was found, we check whether
a vertex was hit by walking.

A barycentric point lies on a vertex of a triangle if

bPtx = 0 ∧ bPty = 0 ∨
bPtx = 1 ∧ bPty = 0 ∨
bPtx = 0 ∧ bPty = 1

Next, we move towards the found edge or vertex. We
check if the travelled distance is greater or equal to the
desired distance. If it is, we calculate how much far-
ther we have walked compared to the desired distance
(because we end each iteration on an edge or vertex)
and we move back by the calculated difference vector
to the result point.

Otherwise, if not enough distance was travelled,
we rotate the walking direction (vector) over the in-
tersected edge or vertex.

4.3.3 Rotating the Vector

Rotating the walking direction when an edge to ro-
tate over was found is done as follows: The vector
is rotated over the edge using the Rodrigues’ rotation
formula in a form allowing rotating a vector about an
axis by a given angle (Liang, 2018).

vrot = v⃗cos(θ)+ (⃗n× v⃗)sin(θ)+ n⃗(⃗n · v⃗)(1− cos(θ)),

where v⃗ is a vector in R3, n⃗ is a unit vector describing
an axis of rotation about which v⃗ rotates by an angle
θ and v⃗rot is the rotated vector v⃗.

We select n⃗ as the cross product of the current and
the neighbouring triangle’s (the one that shares the in-
tersected edge with the current triangle) normals’. We
don’t calculate the angle θ directly, we consider the
sine of the desired rotation angle to be the length of
n⃗ (before it is normalized) and the cosine of the an-
gle to be the dot product between the current and the
neighbouring triangle’s normals.



Rotating the walking direction when a vertex was
hit is done as follows:

Figure 2: Illustration of angle computation after vertex hit.

Fig. 2 illustrates the calculation of the angle to go
round a vertex to continue the walk after a vertex was
hit. We set:

β =
n

∑
i=0

αi,γ =
β

2
, (2)

where n is the number of triangles incident with the
hit vertex. In general β ̸= 2π.

The steps of the algorithm are:

1. Calculate γ =
∑

n
i=0 αi

2

2. Calculate δ1

3. Go counterclockwise through the fan of triangles
incident with the hit vertex until kth triangle such
that δ1 +∑

k
i=1 αi < γ < δ1 +∑

k+1
i=1 αi

4. Calculate δ2 = γ−δ1 −∑
k
i=1 αi

5. Continue walking from the hit vertex to (k+1)th
triangle at angle δ2

After the rotation, we switch to the new triangle
and continue with the next iteration.

4.3.4 Summary

To summarize, the straight walk algorithm consists of
the following steps:

1. Get the initial direction in which to walk
2. Find the edge which will be intersected by the

walk
3. Check if a vertex was hit
4. Check if desired distance was travelled

• If (more than) enough distance travelled, back-
track and return result point. End.

5. Rotate the walk direction (vector) over the inter-
sected edge or vertex

6. Switch to the next triangle
7. Go to 2.

4.4 Hexagonal Grid Generation on the
Surface

Hexagonal grid is used for encoding the correction
vector as two integer numbers - layer index and an
index of a given hexagon within the specified layer.
When a prediction is made, this part of the algo-
rithm generates a hexagonal grid on the surface of the
mesh (using the surface walking module described in
section 4.3) from the prediction point and finds the
hexagon, whose centre is closest to the correct point.

Note that rather than generating the actual
hexagons, the algorithm only generates their centres
by walking a certain distance in a certain direction
from the prediction point. Layer index 0 is reserved
for the hexagon generated centered at the prediction.
The hexagons in each layer are indexed clockwise.

For determining the distance to travel to a given
hexagon centre, cube coordinates are used (see Fig.
3). Cube coordinates assign a virtual 3D point to the
centre of each hexagon. This 3D point can be under-
stood as a vector going from point [0,0,0] (i.e. the
hexagon in layer 0) to said point. This vector is then
multiplied by the user specified distance between two
centres of two neighbouring hexagons.

(a) Cube (b) Cube coordinates
for hexagonal grid

Figure 3: Cube coordinates for hexagonal grid.

The direction in which the centre of the first
hexagon of layer 1 lies is selected as v⃗ = V1 −V0,
where V0 is the first vertex of the triangle in which
the grid generation starts and V1 is the second vertex
of said triangle.

The user must specify the distance between two
centres of two neighbouring hexagons hexSize. From
hexSize we can calculate the distance between the
centre of a hex and its vertex and mark it as
centPeakDist:

triHeight =

√
(hexSize)2 − (

hexSize
2

)2

centPeakDist = (
2 · triHeight

3
) ·
√

2.

The user also specifies the maximum number of lay-
ers to be generated (maxLayers).



The used approach for determining the closest
hexagon to the end point works as follows:

1. Get the default direction vector as v⃗ =V1 −V0

2. Calculate centPeakDist
3. Calculate distance from the starting point to the

end point and save as d, set i = 1
4. Generate cube coordinates for hexagons in layer i
5. Generate hexagons in layer i. Use the cube coor-

dinates to get the distance of each hexagon from
the starting point (centre of the central hexagon)

• For each hexagon in the current layer, check if
its centre is closer to the end point than d, if it
is, update d

• If d < centPeakDist, return this hexagon as the
closest one. End.

6. Increment the angle of direction by 60/i
7. If i > maxLayers, return hexagon of distance d.

End.
8. Increment i and go to 4.

5 EVALUATION

The experiments to verify the functionality of the al-
gorithm were carried out on three different data sets
(meshes), each with three different hexagon sizes
and three different reference meshes. The results
were compared to the performance of a reference
implementation of the EdgeBreaker algorithm with
weighted parallelogram prediction (Váša and Brun-
nett, 2013), so that similar Mean Square Error (MSE)
was achieved and therefore the bitrates correspond to
comparable errors.

See the original meshes in section 5.1. The dif-
ferent types of reference meshes will be presented in
the following sections. Three different hexagon sizes
were selected as follows:

• hexSize1 = length/1
• hexSize2 = length/2
• hexSize3 = length/3,

where length is the length of the 1st edge of the
0th triangle of the input mesh and hexSizeX is the dis-
tance between two adjacent hexagons’ centres.

Note: We will use this hexagon size designation
in the following sections.

5.1 Input meshes

Fig. 4 shows the input meshes (meshes to be encoded)
which were used for the experiments.

(a) Mesh 1:
Lion

(b) Mesh 2:
Person

(c) Mesh 3:
Homer

Figure 4: Input meshes.

Note: This section contains charts showing the
distribution of layer numbers and their occurrences.
The layers (denoted on the x axis) are sorted by their
number in ascending order. The maximum layers al-
lowed to be generated for these experiments was 500.
Only those layers which appeared at least once are
visible in the chart.

For every encoded mesh, MSE was computed as
well as bits per vertex (bpv) of the hexagon layers
and indices lists using arithmetic coding, see subsec-
tion 5.2. Experiments on the input meshes were per-
formed with unsuitable, good and very good reference
meshes.

By unsuitable reference, we mean such a mesh
whose surface is not very similar to the surface of the
input mesh. These reference meshes were acquired by
running ten iterations of HC Laplacian Smoothing on
the input meshes using the MeshLab software. Fig. 5
shows a typical result achieved by encoding the Lion
mesh using an unsuitable reference mesh.

(a) Reference
mesh

(b) Encoded
mesh

(c) Hexagon layers distribution
Figure 5: Lion mesh encoded using an unsuitable reference
mesh and hexSize2.



(a) Reference
mesh

(b)
Encoded

mesh

(c) Hexagon layers distribution
Figure 6: Person mesh encoded using a good reference
mesh and hexSize2.

(a) Reference
mesh

(b) Encoded
mesh

(c) Hexagon layers distribution
Figure 7: Homer mesh encoded using a very good reference
mesh and hexSize2.

Good reference meshes were acquired by running
two iterations of HC Laplacian Smoothing on the
original meshes using the MeshLab software. Fig. 6

shows a typical results achieved by encoding the Per-
son mesh using a good reference mesh.

Very good reference meshes were acquired by
running one iteration of Isotropic Explicit Remeshing
on the original meshes using the MeshLab software.
Fig. 7 shows a typical results achieved by encoding
the Homer mesh using a very good reference mesh.

5.2 Mean Square Error and BPV Data

This subsection contains information about the calcu-
lated MSE and bpv for each mesh. The data is shown
in tables 1, 2 and 3 and in Figures 8, 9 and 10. In
the tables, the rows are coded U, G or V - these let-
ters stand for Unsuitable, Good or Very good refer-
ence meshes. The numbers following the letters de-
note the hexSize used for the experiment, i.e. 1 stands
for hexSize1, 2 for hexSize2 and 3 for hexSize3. The
results were compared with the performance of the
Edgbreaker algorithm, as shown in Table 4.

In the figures showing the comparison between the
proposed method and the EdgeBreaker algorithm, the
EdgeBreaker performance is color coded in blue. The
points show the performance of the proposed method
and are color coded as folows: Performances mea-
sured when using unsuitable reference meshes are dis-
played in red, good reference meshes in orange and
very good reference meshes in green.

The shown BPV is needed for encoding only the
geometry of the objects, the bitrate needed for encod-
ing the connectivity is not taken into account, as it
would be the same in both cases. The data shows
that our method is able to outperform the state of the
art algorithm, especially at very low bitrates, provided
that a good or very good reference mesh is provided.
At higher bitrates, the proposed algorithm results in
a higher distortion, likely caused by projection on the
reference surface.

MSE bpv
layers

bpv
indices

bpv
total

U, 1 1.51 ·10−2 1.29 2.34 3.63
U, 2 9.35 ·10−3 1.64 2.96 4.60
U, 3 8.32 ·10−3 2.03 3.52 5.55
G, 1 7.70 ·10−3 1.34 2.40 3.74
G, 2 2.37 ·10−3 1.72 3.01 4.73
G, 3 1.38 ·10−3 2.13 3.58 5.71
V, 1 6.67 ·10−3 1.41 2.42 3.83
V, 2 1.66 ·10−3 1.78 3.09 4.87
V, 3 7.17 ·10−4 2.17 3.61 5.78

Table 1: Performance on the Lion mesh.



MSE bpv
layers

bpv
indices

bpv
total

U, 1 2.92 ·10−5 1.19 2.10 3.29
U, 2 1.72 ·10−5 1.44 2.55 3.99
U, 3 1.49 ·10−5 1.72 2.97 4.69
G, 1 1.68 ·10−5 1.20 2.09 3.29
G, 2 4.93 ·10−6 1.42 2.51 3.93
G, 3 2.77 ·10−6 1.72 2.95 4.67
V, 1 1.65 ·10−5 1.23 2.14 3.37
V, 2 4.98 ·10−6 1.56 2.67 4.23
V, 3 2.84 ·10−6 1.93 3.19 5.12

Table 2: Performance on the Person mesh.

MSE bpv
layers

bpv
indices

bpv
total

U, 1 5.59 ·10−2 1.98 3.20 5.18
U, 2 4.90 ·10−2 2.79 4.19 6.98
U, 3 4.77 ·10−2 3.29 4.85 8.14
G, 1 1.13 ·10−2 2.01 3.28 5.29
G, 2 5.48 ·10−3 2.78 4.25 7.03
G, 3 4.36 ·10−3 3.30 4.92 8.22
V, 1 7.62 ·10−3 2.02 3.27 5.29
V, 2 2.02 ·10−3 2.80 4.33 7.13
V, 3 1.00 ·10−3 3.34 4.99 8.33

Table 3: Performance on the Homer mesh.

MSE bpv
Lion 2.60 ·10−1 3.72

1.03 ·10−2 4.30
2.26 ·10−3 5.19
6.30 ·10−4 6.74

Person 6.41 ·10−4 3.56
2.49 ·10−5 3.67
6.25 ·10−6 4.10
2.50 ·10−7 7.93

Homer 2.50 ·10−1 3.86
1.00 ·10−2 5.53
2.46 ·10−3 7.41
6.25 ·10−4 10.02
2.50 ·10−5 17.13

Table 4: Edgbreaker performace.

6 CONCLUSIONS

We have presented a compression algorithm for tri-
angle meshes that uses a reference mesh of similar

Figure 8: Performance comparison on the Lion mesh.

Figure 9: Performance comparison on the Person mesh.

Figure 10: Performance comparison on the Homer mesh.

shape to reduce the required data rate. Although the
reference shape undoubtedly provides quite a lot of
information about the input mesh, exploiting it turns
out to be a non-trivial task, since the particular choice
of sampling of the shape represents a major portion
of the data needed for defining a triangle mesh. The
results, however, demonstrate that our algorithm suc-
ceeds at this using a novel combination of intrinsic
encoding and hexagonal grid quantization.

In the current state, the algorithm is only practi-
cal for offline encoding, since the encoding is sub-
stantially slower than the decoding because of the ex-
haustive search for closest hexagon centre. This does
not eliminate all practical scenarios, because often



meshes are indeed encoded offline and stored for later
processing, and the limiting factors are transmission
time (which is improved due to better compression
efficiency), and decoding time, which is much faster
than the encoding.

In the future, we would like to investigate a more
efficient means of finding the nearest hexagon centre.
We have already performed experiments with a vari-
ant of walking algorithm with promising results, more
tests are, however, still needed.

Also, we would like to explore possibilities of bet-
ter mapping of local quantization areas to the curved
surface of the reference mesh. It is well known that
hyperbolic vertices, i.e. vertices with sum of inci-
dent angles larger than 2π, compromise the bijectivity
of the exponential map, creating a certain ”shadow”
which cannot be reached by walking along a straight
line. Overcoming this problem could lead to a further
reduction of the data rate.

Finally, in the future we would like to perform ex-
periments with an additional correction layer limiting
the projection error and making it possible to reach an
arbitrary coding precision.

ACKNOWLEDGEMENTS

This work was supported by the project 20-02154S
of the Czech Science Foundation. Eliška Mourycová
was partially supported by the University specific re-
search project SGS-2019-016 Synthesis and Analysis
of Geometric and Computing Models. The authors
thank Diego Gadler from AXYZ Design, S.R.L. for
providing the test data.

REFERENCES

Alliez, P. and Desbrun, M. (2001). Valence-Driven
Connectivity Encoding for 3D Meshes. Com-
puter Graphics Forum.

Caillaud, F., Vidal, V., Dupont, F., and Lavoué, G.
(2016). Progressive compression of arbitrary
textured meshes. Computer Graphics Forum,
35(7):475–484.

Chen, C., Xia, Q., Li, S., Qin, H., and Hao, A.
(2018). High-fidelity compression of dynamic
meshes with fine details using piece-wise man-
ifold harmonic bases. In Proceedings of Com-
puter Graphics International 2018, CGI 2018,
page 23–32, New York, NY, USA. Association
for Computing Machinery.

Corsini, M., Larabi, M. C., Lavoué, G., Petřı́k, O.,

Váša, L., and Wang, K. (2013). Perceptual Met-
rics for Static and Dynamic Triangle Meshes.
Computer Graphics Forum.

Hoppe, H. (1996). Progressive meshes. In Proceed-
ings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’96, page 99–108, New York, NY,
USA. Association for Computing Machinery.

Liang, K. K. (2018). Efficient conversion from rotat-
ing matrix to rotation axis and angle by extend-
ing rodrigues’ formula.

Rossignac, J. (1999). Edgebreaker: Connectivity
compression for triangle meshes. IEEE Transac-
tions on Visualization and Computer Graphics,
5(1):47–61.

Sorkine, O., Cohen-Or, D., and Toldeo, S. (2003).
High-pass quantization for mesh encoding. In
Proc. of Eurographics Symposium on Geometry
Processing, pages 42–51, Aachen, Germany. Eu-
rographics Association.

Touma, C. and Gotsman, C. (1998). Triangle mesh
compression. In Graphics Interface, pages 26–
34.

Tutte, W. T. (1962). A census of planar triangulations.
Canadian Journal of Mathematics, 14:21–38.

Valette, S. and Prost, R. (2004). Wavelet-based
progressive compression scheme for triangle
meshes: Wavemesh. IEEE Trans. Vis. Comput.
Graph., 10(2):123–129.

Váša, L. and Brunnett, G. (2013). Exploiting connec-
tivity to improve the tangential part of geometry
prediction. IEEE Transactions on Visualization
and Computer Graphics, 19:1467–1475.

Váša, L. and Dvořák, J. (2018). Error Propagation
Control in Laplacian Mesh Compression. Com-
puter Graphics Forum.


