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In this paper, we present an algorithm for efficient encoding of triangle meshes. The algo-
rithm preserves the local relations between vertices by encoding their Laplacian coordi-
nates, while at the same time, it uses a hierarchy of additional vertex constraints that
provides global rigidity and low absolute error, even for large meshes. Our scheme outper-
forms traversal based as well as Laplacian-based compression schemes in terms of both
absolute and perceived distortion at a given data rate.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Triangle meshes are getting increasingly popular as a
new medium storing shapes of 3D objects, thanks to recent
advances in 3D scanning and even 3D printing. Publishing
3D meshes representing products is an attractive new way
of marketing, and sharing 3D meshes may be the next step
in computer-aided social interaction. Efficient storage of
this kind of data is essential in both allowing displaying
of the information even on mobile devices with low band-
width on the content consumer side, as well as in allowing
storage of many highly detailed models on the side of the
content distributor.

The task of mesh compression is to store the triangle
mesh in a file that is as small as possible. As with other
kinds of media, some precision loss is allowable in most
applications in order to achieve even smaller file sizes. This
problem has been studied for about two decades now, yet
only recently scientists started to seriously analyse the
perception-related issues arising from the problem. In
particular, measuring the amount of distortion due to the
precision loss has recently received much attention. New
error metrics have been proposed that capture the per-
ceived distortion much better than mean squared error
(MSE) and its derivatives. Along with this progress, new
compression algorithms have been suggested, which
attempt to minimise the perceived distortion.

One of the most efficient algorithms in this regard is
the high-pass coding (HPC) proposed by Sorkine et al.
[13]. The idea is to express the mesh in terms of local
details, using a combinatorial discrete Laplacian. These
details are in turn transmitted to the decoder, which
solves a linear inverse problem. The approach is very effi-
cient and outperforms all previous methods in terms of
perceptual metrics, which usually focus on local similarity
of meshes. Despite these advantages, users seem reluctant
in adopting this technique, mainly because it lacks a
mechanism that would avoid error accumulation. As a
result, the performance of HPC in terms of MSE is rather
poor, and the algorithm is unable to provide a guarantee
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of maximum absolute dislocation of vertex positions. This
in turn leads to problems when several meshes interact in
3D space by touching each other – even though the HPC
compressed meshes show little perceptual distortion, they
may intersect or not touch each other correctly, which is a
disturbing artifact.

In this work, we propose an extension of the HPC algo-
rithm which avoids this problem. We include additional
data into the data stream, which describe the higher-level
relations between vertices of the mesh, thus limiting the
error accumulation and providing a considerable
improvement as measured by MSE as well as perceptual
metrics. Our extension is expressed in the terms of the
original HPC encoding algorithm, and thus it does not
require significant changes in the encoding/decoding
implementation.
2. Related work

Compression of triangle meshes has been intensively
studied in the past. Separate approaches have been pro-
posed for compression of mesh connectivity and mesh
geometry, and it has been shown that using information
from connectivity improves the performance of geometry
compression and vice versa. Most commonly, compres-
sion schemes build on encoding/decoding connectivity
first, followed by a connectivity guided encoding of the
geometry.

Several methods of connectivity compression have
been proposed in the past. Connectivity is usually
encoded without any data loss, while reindexing of indi-
ces is usually used in order to reduce the amount of data
required. The Topological Surgery approach [15] encodes
a vertex spanning tree and a triangle spanning tree that
uniquely identify the connectivity. The Edgebreaker
scheme [11] provides a guarantee of 4 bits per vertex by
encoding the so-called op-codes for each triangle. Valence
based coding approaches [1,7] build on the fact that the
main part of connectivity information is contained in
the vertex degrees. A theoretical bound of 3.245 bits per
vertex has been derived [5] under the assumption that
every possible connectivity is equally probable. The
valence-based encoder provide performance even below
this limit, exploiting the higher probability of highly reg-
ular (vertex degrees close to 6) nature of most practical
meshes.

Encoding of mesh geometry is a task with much more
freedom regarding the loss of precision. Most algorithms
perform quantization of the floating point values at some
stage, while some advanced algorithms have other sources
of precision loss, such as neglecting high frequencies in the
mesh.

One large class of algorithms works during a mesh tra-
versal, which attaches vertices to the decoded part of the
mesh one at the time. The new vertex is predicted in
some way, such as using the parallelogram predictor
[14] or some of its extensions [3,16]. Finally, a correction
vector is encoded that is added to the prediction, yielding
the decoded position of the vertex. If both the encoder
and the decoder work with the same prediction, then this
scheme effectively eliminates error accumulation. An
alternative of this approach working with angles rather
than position vectors has been also proposed [8].

There have also been more complex algorithms pro-
posed, which do not work in the traversal-based fashion.
An algorithm based on eigenvalue decomposition of the
mesh connectivity matrix [6] uses transformation of the
coordinate functions into a basis of the discrete Laplace
operator. A basis reduction is applied to reduce the dimen-
sionality of the data, and the remaining amplitudes are
quantized and encoded.

The high-pass encoding [13,2] also builds on the dis-
crete Laplace operator, only this time using it directly to
transform the coordinate functions into the Laplacian
(delta) coordinates. Together with the anchor points, this
data allows the decoder to reconstruct the original vertex
positions by solving a sparse system of linear equations.
Since we build on this method, it will be described in more
detail in Section 3.

Although mean squared error and Hausdorff distance
have been used extensively for evaluation of the amount
of distortion caused by mesh compression, it has been
recently conclusively shown that these metrics provide
only limited correlation with distortion perception [4].
User studies have been performed and metrics such as
MSDM2 [9], FMPD [19] or DAME [18] have been proposed
to provide better correlation with the results. Currently
researchers are designing new compression algorithms
that minimise the newly proposed metrics, while the tra-
ditional metrics keep their relevance in situations where
multiple objects interact with each other. While the per-
ception based metrics ensure that each object is visually
indistinguishable from the original, the absolute metrics
ensure that the interacting objects, such as touching
hands or shoe touching a floor, stay in correct position
with respect to one another.

Currently, high-pass coding provides the best results in
terms of perceived distortion, while the traversal based
methods work best in terms of mean squared error. In this
paper, we propose an algorithm that outperforms both of
these approaches both in terms of perceptual metrics and
in terms of mean squared error.
3. Algorithm overview

A triangle meshM is defined as a set of vertex positions
v1;v2; . . . ;vV , representing points in 3D space and referred
to as geometry, and a set of index triplets
t1 ¼ ðt1

1; t
2
1; t

3
1Þ; t2 ¼ ðt1

2; t
2
2; t

3
2Þ; . . . ; tT ¼ ðt1

T ; t
2
T ; t

3
TÞ, referred to

as connectivity. We assume that the connectivity has been
transmitted to the decoder, and thus it is available at both
sides of the transmission. The task is to encode the geom-
etry as efficiently as possible.

In the high-pass coding of triangle meshes, the posi-
tions of vertices are not encoded as absolute coordinates.
Instead, for each vertex, the so-called Laplacian coordinates
are computed:
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di ¼
1

kNðiÞk
X

j2NðiÞ
v j

 !
� v i; ð1Þ

where NðiÞ is the set of all vertices incident with vertex v i,
also known as the 1-ring. The Laplacian coordinates rep-
resent the relative position of a vertex with respect to
the centre of mass of its neighbours, i.e. it captures the
local relations between vertices. Computing all Laplacian
coordinates for all vertices can be expressed as a matrix
multiplication r ¼ Lg, where r ¼ ðd1; d2; . . . ; dV ÞT ;g
¼ ðv1;v2; . . . ;vV ÞT and L is in fact a matrix representation
of a combinatorial Laplace operator on the mesh M.

The intention is to transmit the vector r instead of g,
because the values in r have a much smaller entropy, yet
they capture the necessary information about vertex
relations. Unfortunately, the matrix L is rank deficient.
In order to resolve this problem, additional rows are
added to L, one for each connected component of the
mesh. These rows contain only a single unit value at a
position corresponding to one vertex of the connected
component. The resulting rectangular matrix L� is then
used to obtain an extended vector r�, which additionally
contains coordinates of one vertex per connected compo-
nent. This vector is quantized and transmitted to the
decoder, which in turn solves the system L�g ¼ r�, where
r� is the decoded vector r�, which differs from r� slightly
due to quantization.

The high-pass coding is very efficient at preserving the
local distribution of vertices, since the encoded residuals
(i.e. Laplacian coordinates) directly capture the local rela-
tions. On the other hand, the scheme does not prevent
error accumulation in any way, and thus vertices that are
located topologically far from anchor points may get
reconstructed at positions that differ significantly from
the original positions. This is captured by a rather poor per-
formance of the algorithm in terms of mean squared error.
Moreover, this effect is strongly affected by the random
character of the accumulation of quantization error in
areas that are distant from anchor points, and thus some-
times even increasing the precision of quantization actu-
ally leads to an increase of mean squared error.

In our extended version of the algorithm, we use addi-
tional equations that capture relations between topologi-
cally distant vertices as well, and build hierarchical
‘‘suspension’’ structure that is supported by the anchor
points. These additional equations dramatically reduce
the mean squared error. The following section describes
the procedure in detail.

3.1. Construction of vertex hierarchy

In our scheme, we classify the vertices into several lay-
ers. Each vertex is assigned an integer, which determines at
which level of a hierarchical structure the vertex is located,
while initially, all vertices are assigned to level 0. We aim
at a uniform distribution of vertices into layers, and thus
we use the procedure described in Algorithm 1. The steps
of the algorithm are also illustrated by Fig. 1.
Algorithm 1. Vertex level assignment. In our implemen-
tation, we use maxCount ¼ 100, i.e. new levels are added
until there are less than 100 vertices on the highest level of
the hierarchy. The asterisk at line 10 refers to Fig. 1
The level assignment algorithm ensures that no two
neighbouring vertices are promoted to a higher level. It
also provides a set of higher level neighbours NlevelðiÞ for
each higher level vertex. These neighbourhoods are then
used for additional equations described in the next subsec-
tion. Note that we do not create additional equations for
level 1 vertices, because they would create a too large
number of additional residuals that would have to be
encoded, while in our experiments, they did not bring a
significant improvement of compression performance. Also
note that the hierarchy itself does not require any addi-
tional data, since it can be constructed at the decoder from
the mesh connectivity, using a predefined seed for the ran-
dom number generator used in the algorithm.
3.2. Higher level equations

Having the vertex hierarchy with the highest level M,
we add an additional equation for each vertex v i such that
M > level½i� > 1. The equation has the same form as (1)



(A) (B) (C)

Fig. 1. Steps of the level assignment algorithm, depicting the intermediate steps at the point denoted by (⁄) in Algorithm 1. In AÞ, most of the vertices are
still assigned to level 0 (white), only v3 has been assigned to level 1 (red). At this point, vertex v1 can (and will) be promoted to level 1, because there is no
level 1 vertex in its neighbourhood N0ð1Þ, which is equivalent to its topological neighbourhood. In contrast to that, vertex v2 cannot be promoted, because it
has a neighbour that has already been promoted. The situation BÞ depicts the vertices in the next iteration of the algorithm. The vertex v3 can be further
promoted, since in its neighbourhood N1ð3Þ (depicted by red arrows) there is no other vertex that has been promoted in this round. In CÞ, after the
promotion of v3 (now blue), no other depicted level 1 vertex can be promoted. In the particular example, the neighbourhood N1ð4Þ of the vertex v4 contains
the promoted vertex v3 and therefore v4 cannot be promoted. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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with the only difference that the higher level neighbour-
hood is used, i.e. we add euqations of following structure:

dk ¼
1

kNlevel½i�ðiÞk
X

j2Nlevel½i� ðiÞ
v j

0@ 1A� v i; ð2Þ

where k is used as index of the additional equation. These
additional equations capture the relations between more
distant vertices of the mesh, and provide a certain kind
of rigidity to the reconstruction, which is hard to achieve
by only working with the 1-ring neighbourhoods. Note
that we do not use equations on level M, instead, we use
the vertices on level M as anchor points. This way, we build
a stable structure, where the position of level M vertices is
fixed, and positions of level K � 1 vertices are directly con-
nected to the positions of vertices on level K. This suspen-
sion structure effectively limits the error accumulation by
ensuring that each vertex has an anchor point that affects
it over no more than OðlogðVÞÞ equations.
3.3. Prediction of higher level residuals

Each additional equation produces a residual (Laplacian
coordinates with respect to a wider neighbourhood) which
must be transmitted to the decoder. In contrast to the
residuals obtained from the original Laplacian, the residu-
als at higher levels have generally much higher magnitude,
as they relate vertices that are distant from each other.
Moreover, despite of the level assignment procedure that
attempts to distribute the levels evenly, it is often the case
that the vertex lies at a position that differs considerably
from the centre of mass of its neighbours, which leads to
larger Laplacian coordinates. It is therefore desirable to
perform a prediction of these in order to make their distri-
bution more narrowly distributed around zero and thus
reduce their entropy.

In the proposed scheme, the prediction is done for each
level separately. The first step is equivalent to the high pass
encoding, i.e. the decoder receives the residuals of all ver-
tices with respect to their topological neighbourhood, and
the quantized positions of the anchor vertices. This allows
reconstructing the first approximation of the mesh geome-

try g0 ¼ ðv0
0;v0

1; . . . ;v0
V Þ

T
by solving L�g0 ¼ r�. This in turn

allows predicting the Laplacian coordinates corresponding
to the additional equations related to level 1 vertices as
cdk ¼
1

kN1ðiÞk
X

j2N1ðiÞ
v0

j

 !
� v0

i : ð3Þ

The encoder also evaluates this prediction and trans-
mits only a correction ck ¼ dk �cdk . The decoder can now
reconstruct the Laplacian coordinates as dk ¼ ck þcdk . The
probability distribution of the corrections ck is much nar-
rower and their entropy is much smaller than that of the
residuals dk.

The reconstructed residuals dk corresponding to equa-
tions related to vertices at level 2 are now appended to
the vector r�, forming an extended vector r�1. We can now
extend the matrix L� to L�1 by appending rows correspond-
ing to the additional equations related to level 2 vertices.
This now allows solving for an improved reconstruction
L�1g1 ¼ r�1. The reconstruction g1 is used to predict the
residuals dk related to level 3 vertices, allowing for another
extension of the system matrix, until the highest level with
matrix L�M�2 is reached, which is used for the final recon-
struction. The structure of the involved linear systems is
illustrated in Fig. 2.



Fig. 2. Matrices used in the reconstruction process.

Fig. 3. Compression performance on the Blattkachel model measured by
mean squared error.

Fig. 4. Compression performance on the Blattkachel model measured by
visual error [6].
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3.4. Encoding of residuals

After the encoding the whole geometry is represented
by a set of V quantized residuals di, resulting from Eq.
(1), quantized coordinates of anchor points (their number
is determined by the number of vertices on the highest
level), and quantized corrections ck for each vertex on lev-
els from 2 to ðM � 1Þ. In our implementation, we use a sim-
ple uniform quantization, i.e. each floating point value is
multiplied by a user specified constant Q and rounded to
the nearest integer. We encode these integer values using
a context adaptive binary arithmetic coder similar to the
CABAC implementation [10]. We use a separate context
for the residuals, anchor points, and for each level of cor-
rections. At the decoder, the integers are then simply mul-
tiplied by 1=Q .
Fig. 5. Compression performance on the Blattkachel model measured by
FMPD error [19].
4. Results

In our experiments, we have measured the amount of
data required to encode the geometry, i.e. our numbers
do not include the bits required for encoding of connectiv-
ity. Our scheme can be used with any connectivity com-
pression algorithm, which is also true for all the state of
the art algorithms we have compared against. For the com-
parison, we have used four error metrics:

� Mean squared error, which captures the absolute
dislocations of vertices.

� The visual error [6], which is in fact a combination
of mean squared error and discrete shape operator
difference. We are using the weighting constant
a ¼ 0:15 as suggested in [13]. This metric combines
absolute and local error.

� The FMPD [19] perceptual error metric.
� The DAME [18] perceptual error metric.

Figs. 3–6 represent the typical result of our algorithm in
comparison to the high pass coding (HPC) [13], parallelo-
gram prediction [14] and weighted parallelogram predic-
tion [16] on a single high resolution model. Fig. 3 shows
that our algorithm provides results on par with parallelo-
gram prediction, and is only slightly worse than the
weighted parallelogram scheme, while it provides a
massive improvement against HPC. At the same time,
Figs. 5 and 6 show that our scheme outperforms both par-



Fig. 6. Compression performance on the Blattkachel model measured by
DAME error [18].
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allelogram prediction and weighted parallelogram predic-
tion schemes in terms of perceptual error, providing
results on par with HPC. In terms of the visual error, which
combines both local and absolute error, our algorithm pro-
vides the best results. Similar results were obtained for
other models as well, as documented in Table 1.

We have also compared our results against a simpler
approach of increasing the number of anchor points in
the HPC algorithm. The typical results are shown in Figs. 7
Table 1
Results on different models. The data rates (row 4) are given in bits per vertex, and
stands for parallelogram prediction [14], WPP stands for weighted parallelogram pr
the method proposed in [17]. The colour coding is applied on comparable results,
evaluated using the same error metric. One such set of results is marked by the b
and 8. The figures show that by adding random anchor
points, the mean squared error is indeed improved, how-
ever at the cost of an immediate performance drop with
respect to a perceptual metric FMPD. The performance
drop is caused by increasing the data rate by adding anchor
points which are not predicted, i.e. have a rather high
entropy. By adding more anchor points, the FMPD perfor-
mance deteriorates further, while the improvement of
MSE performance stops long before reaching the perfor-
mance of the proposed algorithm, when about 3% of verti-
ces are used as anchors. Adding even more anchors only
leads to decrease in performance in all metrics.

Note that it would be possible to promote specifically
those vertices with largest error to anchors, as done in
[12], probably leading to better results. Although it is pos-
sible to quickly update the factorization after adding a sin-
gle anchor, one still has to perform a (at least) linear step of
solving the factorised system and finding the next vertex
with largest error. Since the total number of anchors that
have to be added is linear, it would lead to a quadratic
complexity of the algorithm.

As for the computational complexity of our algorithm, is
comparable with the HPC. The main bottleneck of the HPC
(and our) algorithm is the factorization and solution of the
extended Laplacian matrix, both of which work for sparse
matrices in roughly linear time. More generally, if the fac-
torization has a complexity of Oðf 1ðVÞÞ, where V is the
they do not include the data required for storing the mesh connectivity. PP
ediction [16], HPC stands for high-pass coding [13], and Wavemesh refers to
i.e. error values of the same model, compressed at the same data rate and
lue rectangle.



Fig. 7. Compression performance on the Blattkachel model measured by
mean squared error, compared with HPC with varying number of anchor
points.

Fig. 8. Compression performance on the Blattkachel model measured by
FMPD error [19], compared with HPC with varying number of anchor
points.

Table 3
Times required for building the hierarchy of test models, in milliseconds.

Model Time to build hierarchy T

Maxplanck 162 50,801
Bunny 209 71,888
Daz_body 321 119,344
Blattkachel 1288 229,330
Hand 1747 654,666
Chindragon 3678 1,311,956
Ramesse 5273 1,652,528
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number of vertices and f 1ðxÞ is some implementation
dependent function, and the solution of the system based
on the factorization has a complexity of Oðf 2ðVÞÞ, one can
express the overall decoding complexity of HPC as
Oðf 1ðVÞ þ f 2ðVÞÞ, while our algorithm runs in
Oðf 1ðVÞ logðVÞ þ f 2ðVÞ logðVÞÞ, because the decomposition
and solution of the system has to be performed logðVÞ
times. If both functions f 1ðxÞ and f 2ðxÞ are linear, then
the complexity of the proposed algorithm is OðV logðVÞÞ
for both encoding and decoding. The Tables 2 and 3 report
the times required for encoding and decoding. The
reported times show that our algorithm is indeed slower
Table 2
Times required for encoding and decoding of test models, in milliseconds. The tim
hierarchy.

Daz_body Blattkachel Hand Chind

Enc. Dec. Enc. Dec. Enc. Dec. Enc.

Proposed 5969 5981 30,550 30,603 40,392 40,454 128,6
HPC 640 1566 2434 6527 3273 8901 68
PP 212 190 1033 958 1438 1332 30
WPP 509 271 1984 1310 2658 1797 54
Wavemesh 1420 446 6003 1429 7388 1941 12,1
than the competing algorithms, yet the complexity
remains feasible.

Should the encoding and/or decoding time pose a prob-
lem for applicability of the proposed algorithm, then it is
possible to speed the algorithm up at the cost of sacrificing
some of the compression performance. Table 4 shows that
a majority of bytes ð> 98%Þ is spent to encode the basis
level (i.e. the normal Laplacian coordinates) and the first
level of the hierarchy. Therefore by omitting the prediction
for higher levels of the hierarchy, one can speed the algo-
rithm up while impairing the compression performance
only marginally. In such case the system is going to be
solved only twice at the decoder, yielding a performance
that is no more than twice slower than the HPC. Another
possibility of improving the processing times would natu-
rally be to carefully optimise the code.

Finally, Fig. 9 shows that the improvement achieved by
our scheme is well visible in realistic situations. Our
scheme provides a good performance in both absolute
error (in contrast with HPC) and perceptual error (in con-
trast with traversal based algorithms). It is also interesting
to note that visually, our result in Fig. 9 seems better than
the one by HPC, although the measured perceptual dis-
tance is roughly equal in both FMPD and DAME. This seems
to indicate that there exists a practical kind of artifacts that
are well perceivable, yet not detected by these perceptu-
ally motivated metrics. It would be interesting to perform
a subjective experiment involving the compression results
similar to the ones depicted here, that would confirm our
hypothesis.

4.1. Conclusions

We have demonstrated that by adding a support struc-
ture of additional equations it is possible to construct an
algorithm that provides excellent results both in terms of
perceived and absolute distortion. Results provided by
our compression scheme are visibly better than those of
es for the proposed algorithm include the times required for building the

ragon Maxplanck Bunny Ramesse

Dec. Enc. Dec. Enc. Dec. Enc. Dec.

38 128,769 1782 1785 3298 3304 185,319 185,475
08 20,667 293 671 406 942 9972 29,643
51 2836 78 69 119 106 4143 3844
44 3750 275 109 365 168 7554 5148
37 2902 646 259 814 281 21,990 5310



Table 4
Number of bytes required for encoding of different levels for different models. The highest level represents the anchor points.

Level Daz_body Blattkachel Hand Chinadragon Maxplanck Bunny Ramesse

0 51,962 366,888 434,954 816,240 39,278 45,473 1,351,937
2 2871 9218 12,381 25,685 911 1323 33,643
3 700 2126 2913 5846 239 327 7674
4 195 553 764 1533 508 100 1998
5 429 135 211 405 503
6 355 441 106 126
7 213 315

Fig. 9. Visual comparison of performance. From left to right: original mesh, result of proposed algorithm, result of HPC algorithm, result from weighted
parallelogram prediction algorithm. All decompressed meshes were obtained from a 32 kB size file.
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the state of the art, and this conclusion is supported by the
measured values.

The construction of intermediate reconstructions leads
to an increase in running time, which is however only of
order OðlogðVÞÞ with respect to HPC. The algorithm run-
ning time remains within practical range.

In the future, we intend to focus on improving the per-
formance of the algorithm, both in terms of efficient com-
pression, as well as fast execution. We believe that the
result of intermediate reconstructions can be used to accel-
erate the solution in the later steps, thus speeding the algo-
rithm up.

Another topic of future research is the possibility of
encoding the values in reversed order, which would allow
the user to display an intermediate decompressed mesh
even before the whole data stream has been decoded. Such
feature is available in our implementation as well, how-
ever, the first approximation is only available after the data
from the lowest level (which take up the largest part of the
stream) are decoded. Reversing the order of encoding
would allow displaying an intermediate reconstruction
much sooner, however, the influence of such change on
the compression performance is to be investigated.

Finally, our results seem to indicate that the used per-
ceptual metrics fail to correctly evaluate the amount of
perceived distortion in some cases. It is an interesting
pointer for future research to confirm this by a statistically
justified subjective experiment. We also believe that the
character of the proposed compression method and the
proposed hierarchical Laplacian may also be used as a
starting point in search for a better error metric.
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