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a b s t r a c t

During the last decade many algorithms for compressing 3D animations represented by
sequences of triangular meshes have been proposed. Most of these algorithms are lossy
in their nature, i.e. the reconstructed data do not exactly match the algorithm input.

Quite surprisingly, most of the existing algorithms mainly use only general compression
techniques, such as entropy coding, quantisation, PCA or wavelet decomposition, while the
inherent geometrical properties of the compressed surface remain unexploited. In this
paper we focus on geometry specific optimisation: we extend the PCA-based dynamic
mesh compression by optimising the order in which the mesh is traversed. By considering
the distribution of residuals and optimising the gate selection strategy we achieve data rate
reductions by 5.9–29.1% over the existing approaches in the experiments, while the error
introduced by compression remains unchanged. This optimisation improves the perfor-
mance of our encoder above the performance of current state of the art algorithms.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Recent fast development of hardware has allowed pro-
cessing of highly precise animated surface meshes. How-
ever, most representations of such data are highly
demanding for both storage space and bandwidth for
transmission. A very convenient representation of ani-
mated 3D surface model is the dynamic mesh – a series of
static triangular meshes, which share a single connectivity,
but each frame of the animation has a different geometry
(vertex positions). In this representation we need three
float or double values for each vertex in each frame, plus
one additional set of indices identifying the shared connec-
tivity. The connectivity compression has been thoroughly
studied for the case of static meshes, and since it is shared
by all the meshes in the sequence we can neglect it’s influ-
ence on the overall data requirements for storage of the dy-
namic mesh.

This has motivated development of lossy geometry
compression techniques, which can exploit inherent
redundancies in the data. Usually the algorithms focus on
the temporal coherence, which is much stronger than in

the case of video data. In the case of temporal coherence
we use the fact that position of a vertex in two subsequent
frames is likely to change only slightly, which allows using
temporal prediction in order to reduce the entropy of en-
coded data.

The data however also exhibit a different kind of redun-
dancy, which has been already identified and exploited in
the case of static triangular meshes: the spatial redun-
dancy. In this case, we use the fact that the positions of
neighbouring vertices (neighbouring in the sense of trian-
gular connectivity) are likely to have similar positions.

This redundancy is in fact exploited by most dynamic
mesh compression algorithms, however in most cases it
is only exploited partially. The clustering-based algorithms
usually build a local coordinate system in order to reduce
the entropy of the data, other types of algorithms use
PCA and wavelets to exploit the spatial coherence. How-
ever, one of the most efficient approaches used in static
mesh encoding – the parallelogram prediction [1] – has
only been used in few dynamic compression schemes.

Parallelogram prediction uses information about imme-
diate neighbourhood, and therefore it usually outperforms
the clustering-based algorithms, where prediction is based
on cluster centre which is usually much further away. It
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also uses the information contained in the shared connec-
tivity, which is often neglected by dynamic mesh compres-
sion algorithms. Efficiency of parallelogram prediction has
been demonstrated for static meshes, however it can be
still improved by accurately choosing prediction gates
(prediction parallelograms). By changing the traversal or-
der in a way similar to [2,3] it is possible to change the data
available for prediction, thus making the prediction resid-
uals smaller and residual entropy lower.

In this paper, we propose using optimised traversal
strategy for dynamic mesh compression. Optimising mesh
traversal order is in fact more appropriate for dynamic
meshes, where the overhead of information needed to
specify the traversal order is more easily outweighed by
the benefit of reducing the entropy of geometry residuals,
which take much larger part of the encoded data than in
the case of static meshes.

Our contribution is a novel cost function for selecting
the best gate, based on estimating the distribution of resid-
uals. The proposed cost function minimises the residual
magnitudes with nonuniform weighting, which leads to
an improved performance of the encoding. Using the pro-
posed cost function, we suggest several gate selection
strategies and identify the best performing one based on
their performance in experiments with all the available
data sets. We also describe a simple but efficient method
of encoding the traversal order selected by the encoder.

The rest of this paper is organised as follows: Section 2
overviews the related work in the area of dynamic mesh
compression and traversal order optimisation. Section 3
will introduce notation used in the rest of the paper and
Section 4 gives an overview of the trajectory-space PCA dy-
namic mesh compression, upon which we will build our
extension. Section 5 will introduce a general approach to
traversal order optimisation, and Sections 6 and 7 will de-
scribe in detail some important steps in the optimisation.
Finally, Section 9 will describe the results obtained with
the proposed approach and Section 10 will draw
conclusions.

2. Related work

In recent years, a multitude of algorithms has been pro-
posed for compression of dynamic meshes. The algorithms
use various approaches to exploiting spatial and temporal
coherence of the data.

First attempt to dynamic mesh compression has been
published in the paper by Lengyel [4], which exploits spa-
tial coherence of the data by subdividing the mesh into
clusters in which the movement can be described by a sin-
gle transformation matrix.

Ibarria and Rossignac [5] later suggested a local spatio-
temporal prediction schemes ELP and Replica, which were
used to predict next vertex position during a mesh
traversal using the EdgeBreaker state machine. A similar
approach has been used by Stefanoski et al. [6] in the angle
preserving predictor. The position of the new vertex is
expressed in a local coordinate system defined by a
neighbouring triangle.

Owen and Zhang [7] have proposed exploiting spatial
coherence using an octree to subdivide the model and

encoding each subdivision cell separately. This approach
has been improved by Mueller et al. [8,9]. In their approach
they select the best fitting appropriate predictor for each
cell, and the cells which are predicted badly are further
subdivided.

The wavelet theory has been used for exploiting tempo-
ral coherence in the work by Payan and Antonini [10],
which suggested treating separate vertex trajectories as
sampled signal. However, their method did not use the
spatial coherence present in the data.

A different class of approaches has been pioneered by
Alexa and Mueller [11], which suggested using the PCA
in the space of frames, expressing each frame as a linear
combination of eigen-frames. However, this method had
problems with rigid movement, which had to be compen-
sated in a preprocessing step, where a transformation ma-
trix for each frame has been found using the least squares
approach.

The method has been subsequently improved in a paper
by Karni and Gotsman [12], which suggested exploiting the
temporal coherence of the PCA coefficients by encoding
them using linear prediction coding (LPC), thus achieving
a lower entropy of the encoded data. Another improve-
ment has been proposed by Sattler et al. [13], which sug-
gests using PCA in the space of trajectories, and finding
clusters of vertices where the PCA worked well (Clustered
PCA). However, their iterative clustering method did not
always reach the same clustering because it had been ran-
domly initialised.

Another addition to the PCA based method was pro-
posed in 2007 in a paper by Amjoun [14,15], which sug-
gested using a trajectory based analysis along with
expressing each trajectory in a local coordinate frame de-
fined for each cluster. Additionally, a bit allocation proce-
dure is applied, assigning more bits to cluster where
more PCA coefficients are needed to achieve desired preci-
sion. This paper also mentions the compression of the PCA
basis, however it suggests simple direct encoding without
prediction and with uniform quantisation of the basis
matrices.

Mamou [16] has proposed an approach similar to the
PCA, called skinning based compression. The mesh is first
segmented into parts that move in an almost rigid fashion.
The movement of each cluster is expressed by a transfor-
mation matrix, and subsequently each vertex is assigned
a vector of weights, that tells how to combine the trans-
forms of the neighbouring clusters to obtain the movement
of the vertex.

A resampling approach has been proposed by Briceno
et al. [17] in the work on Geometry Videos. This idea is
an extension of the previously proposed Geometry Images
[18]. The geometry of the object is unwrapped and pro-
jected onto a square, which is regularly sampled. The
resulting image is encoded using some off-the-shelf algo-
rithm. The extension to videos solves the problems of find-
ing a single mapping of a moving content onto a square
while minimizing the overall tension. Generally, the meth-
od is not easy to implement and suffers from some arti-
facts, especially for objects with complex geometry.

Recently, there are also scalable approaches appearing,
such as the scheme proposed by Stefanoski et al. [19].
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These approaches allow progressive level of detail trans-
mission of the dynamic mesh, and also achieve better com-
pression ratios by using sophisticated local predictors
which use the data from coarser detail levels.

In 2009, a second amendment of the MPEG-4 part 16
was published, specifying a new MPEG standard for dy-
namic mesh compression, the FAMC algorithm [20]. The
standard is based on the algorithms of Mamou and Stef-
anoski, and it includes a specific arithmetic coder based
on the CABAC scheme [21]. The algorithm has been shown
to outperform all the algorithms available at the time of
publication. Quite surprisingly, this algorithm almost ne-
glects the information about connectivity, and apart from
a clustering step, it processes the data as a point cloud
rather than as a connected mesh.

Recently Váša and Skala have published compression
schemes based on the trajectory-space PCA, suggesting a
combination of the PCA step with an EdgeBreaker-like
mesh traversal (see Rossignac [22]) and parallelogram pre-
diction [1]. The Coddyac algorithm [23] predicts the PCA
coefficients by the well known parallelogram local predic-
tor, which allows better performance than the clustering-
based approaches. Subsequently, they have suggested
using vertex decimation as a part of the compression
[24]. The main advantage of this approach is that it allows
the encoder to partially steer the decimation process
according to the accuracy of the used predictors, and there-
fore their approach is well suited for interchanging predic-
tors. Finally, the authors have presented an algorithm for
efficient encoding of the PCA basis [25], which has boosted
the performance of the algorithm so that it outperforms
the FAMC standard.

Note that in contrast to Alexa et al. [11] the schemes
of Váša and Skala are based on PCA in the space of tra-
jectories, which is of a much lower dimension than the
space of shapes. The dimension depends on the number
of frames in the animation, however the number of
frames is dictated by the rules of content editing (see Re-
isz et al. [26]), which usually state that individual scenes
between scene cuts should not be longer than 20 sec-
onds (500 frames). Moreover, a longer sequence can be
quite easily split into shorter sequences, and thus the
dimension of the space never has to be much larger than
about 1500 (three coordinates in each frame). Therefore
the schemes based on trajectory-space PCA are fully
practical, because the PCA step can be usually performed
in 1–2 min instead of hours needed for the shape space
PCA.

We should also note two works on static mesh encod-
ing, where traversal optimisation has been used to im-
prove compression rates. Kronrod and Gotsman [2] have
suggested interpreting the task as a minimum spanning
tree (MST) problem, however the specifics of the problem
do not allow using MST algorithms to find a global
solution. In the end, the authors propose an algorithm
which can be interpreted as a greedy growth of a processed
region, using a cost function defined by lengths of predic-
tion residuals. Later Chen et al. [3] have proposed a modi-
fication of this approach, however it is again a greedy
strategy which grows a processed region of the mesh by
one triangle at the time.

In this paper, we propose a modification of the greedy
strategy for traversal optimisation, applied on dynamic
mesh encoding. We build on the trajectory-space PCA
based method, and we enhance the approach by including
traversal optimisation similar to the one proposed by
Kronrod and Gotsman, however using an improved cost
function and a different gate selection strategy.

3. Used notation

Throughout the rest of the paper we will use following
symbols:

F – number of frames in the input animation sequence
V – number of vertices in each frame of the input ani-
mation sequence
N – dimension of the reduced trajectory space after
applying PCA. Usually set by user, N� 3F
Ei – ith basis vector of the PCA space, in order of impor-
tance (i.e. in order of descending eigenvalue)
�n – denotes the decoded value of n (vertex coordinate,
component of feature vector, matrix of coordinates,
etc.), which may be different from the original value
of n due to quantisation and other sources of informa-
tion loss.
pred(n) – denotes prediction of the value n, which is
computed by both encoder and decoder
gate g – information about a potential expansion of the
processed part of the mesh through the edge hg.v1,g.v2i.
A gate (depicted in Fig. 1) is formed by two triangles:
g.t1, which has been already processed, and g.t2, which
might not have been processed. The triangle g.t1 has
vertices hg.v3,g.v1,g.v2i and the triangle g.t2 is formed
by vertices hg.v4,g.v2,g.v1i. The vertices
hg.v1,g.v4,g.v2,g.v3i form a quadrilateral which might
be used to predict the data assigned with vertex g.v4

from data assigned with vertices g.v1, g.v2 and g.v3.

4. Trajectory space PCA algorithm overview

In this paper we will examine the influence of opti-
mised mesh traversal on the trajectory-space PCA algo-
rithm Coddyac [23], which we will now describe in more
detail. The algorithm is based on representing dynamic
meshes as a set of vertex trajectories of individual vertices.
Trajectory of the ith vertex is described by a vector Ti of

Fig. 1. Vertices and triangles forming a gate structure.
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length 3F, consisting of XYZ coordinates of the given vertex
in all the frames. Notice that for dense meshes, it is very
likely that trajectory vectors of neighbouring vertices will
be similar. In other words, the trajectory vectors are not
distributed evenly in the space of dimension 3F, instead
they are roughly located in a subspace of much lower
dimension. This observation yields the first step of the
Coddyac algorithm: finding the subspace and expressing
the vertices in this subspace.

A straightforward way to find a subspace of a set of
samples is using the PCA tool of linear algebra. We repre-
sent the original animation by a matrix B of size 3F � V,
where the ith column is the trajectory vector associated
with the ith vertex. First, we compute an average trajectory
vector A (over all vertices), and subtract it from each col-
umn of B, obtaining a matrix of samples S. Subsequently,
we compute the autocorrelation matrix Q = S.ST of size
3F � 3F. Finally, the eigenvalue decomposition of the auto-
correlation matrix Q gives us a set of eigenvectors Ei,
i = 1. . .3F, and their corresponding eigenvalues.

These eigenvectors form a so-called decorrelated basis
of the original space, i.e. expressing the original trajectory
vectors in this basis reduces significantly the redundancy
present in the data. Out of these eigenvectors we select N
most important ones (according to their respective eigen-
values), N being a user-specified parameter. The selected
eigenvectors form a basis of the subspace, and each trajec-
tory vector can be expressed as:

Ti ¼ Aþ
XN

j¼1

cj
iEj ð1Þ

Since the basis is orthonormal it is possible to compute the
matrix of combination coefficients cj

i by matrix multiplica-
tion C = STE, where E is a matrix of size 3F � N in which the
ith column is the ith eigenvector Ei. The vector of

coefficients cj
i; j ¼ 1 . . . N, corresponding to the ith vertex

(which is a particular row of matrix C), is known as the fea-
ture vector of the vertex i. Note that the feature vector can
be seen as transformed trajectory vector – it describes the
trajectory of a vertex, however, its components no longer
relate to particular frames or axes. Instead, it determines
how to combine the eigen-trajectories in order to obtain
the trajectory of a particular vertex.

In order to transmit the dynamic mesh we have to
transmit the selected subset of eigenvectors (matrix E of
size 3F � N), the combination coefficients (matrix C of size
V � N) and the vector A representing the average trajec-
tory. Details on how to efficiently encode the matrix of
eigenvectors can be found in [25].

The other key observation of the Coddyac algorithm is
that the PCA step can be interpreted as a simple change
of basis, and therefore it should not have any influence
on results of linear operators. This feature is employed
for prediction of the values cj

i at the decoder. In static mesh
encoding, a very common prediction method is based on
the parallelogram rule [1,27]. The idea is that the mesh is
traversed progressively by growing an area of processed
vertices by adding one adjacent triangle (with one adjacent
vertex) at a time. The expansion is always performed
through a gate g, which is selected by the used topology
compression/traversal scheme. The XYZ coordinates of
the new vertex g.v4 are predicted to lie at the top of a pro-
jected parallelogram formed by the three known vertices
g.v1, g.v2 and g.v3. The coordinate prediction is then ex-
pressed as:

predðvX
g:v4
Þ ¼ vX

g:v1
þ vX

g:v2
� vX

g:v3

predðvY
g:v4
Þ ¼ vY

g:v1
þ vY

g:v2
� vY

g:v3

predðvZ
g:v4
Þ ¼ vZ

g:v1
þ vZ

g:v2
� vZ

g:v3

ð2Þ

Fig. 2. Example of measured and fitted cumulative distribution function. The data represent the distribution of residuals of eighth basis vector of the
chicken run data sequence.
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In dynamic mesh compression, these formulae may be ap-
plied on each component1 of the trajectory vectors. How-
ever, since the feature vectors are in fact linearly
transformed trajectory vectors, it is possible to use the same
formula also for the elements of feature vectors:

predðcj
g:v4
Þ ¼ cj

g:v1
þ cj

g:v2
� cj

g:v3
; j ¼ 1 . . . N ð3Þ

The Coddyac algorithm traverses the mesh, adding one tri-
angle at the time, performs the prediction according to Eq.
(3) and transmits the quantised prediction residuals.
Although any integer coding scheme can be used, it is rea-
sonable to expect an exponential distribution with zero
mean of the prediction residuals (see Fig. 2), and therefore
it is efficient to use an arithmetic entropy coder together
with exp-Golomb coding.

5. General approach

In the case of compressing static meshes, the number of
possible gates is about six times larger than the number of
vertices, and a traversal order selects one gate for predic-
tion of each vertex. Therefore there is quite large freedom
in choosing a particular traversal order.

In our approach, we start from the observations made
for the static meshes. It is possible to find a globally opti-
mal traversal order, but such problem can be interpreted
as a special case of the Minimal Steiner Tree problem,
which is known to be NP-Hard [2]. Therefore, we will use
a greedy algorithm to traverse the mesh with a growing re-
gion of processed mesh, which is expanded in each step by
one triangle, and we will focus on how to select the border
edge (gate) for the next expansion step.

The first difference with respect to algorithms for static
mesh encoding is that we will not use the mesh traversal to
encode the connectivity of the mesh. We assume that the
connectivity has been encoded using some efficient ap-
proach known for static meshes, and that it is known to
both encoder and decoder. The traversal of the mesh is per-
formed solely for the purpose of geometry encoding, and
the description of the traversal order is considered a neces-
sary overhead. Later in Section 8 we will show how to en-
code the traversal description with minimum data.

The general framework of the algorithm works in the
following steps:

1. Assign cost K(g) to each potential gate.
2. Select an unprocessed first triangle at random, add its

edges into the initial set of gates G.
3. Select the best gate gb from G.
4. Perform expansion of the processed area through gb,

including following steps:
� if the vertex gb.v4 has not been processed, then per-

form its prediction and encode residuals into the
output stream,

� remove gb from G,
� add to G any new gates created by expansion

through gb.

5. If G contains any more gates, then proceed with step 3.
6. If the mesh contains any unprocessed triangles, then

proceed with step 2.

Note that in the first step, we evaluate all the possible gates
of the mesh. The mesh of V vertices contains roughly 3V
edges, and each edge can be passed by a potential gate in
two directions. Therefore there are approximately 6V
potential gates.

We will now discuss several possibilities of how to

� assign costs to gates,
� select the best gate,
� encode the final traversal order.

6. Assigning costs to gates

The previous approaches to traversal optimisation [2,3]
have used sum of lengths of residuals as costs for potential
expansion gates. Working with feature vectors, we can
compute the cost of traversing through gate g as:

KlðgÞ ¼
XN

j¼1

kpredðcj
g:v4
Þ � cj

g:v4
k ð4Þ

This approach, although intuitive, does not follow the ac-
tual purpose of traversal order optimisation. In fact, we
should not attempt to reduce the sizes of residuals, instead,
we should attempt to reduce the size of encoded residuals,
which contributes to the length of the final code. Although
closely linked, the two criteria are fundamentally different.
Knowing a probability p of a symbol, we may express the
(possibly fractional) number of bits required to encode it
as:

DðpÞ ¼ log2
1
p

� �
ð5Þ

The symbol might be for example a particular value of a
quantised prediction residual. The number of bits required
to encode the whole vector of residuals associated with a
particular vertex is then expressed as a sum of contribu-
tions D(p). This sum should then work as a cost for a par-
ticular gate producing the vector of quantised residuals.

The key observation is that the probability of a particu-
lar symbol is different for each component of the feature
vector residual. The values at low index positions have
much higher variance, and therefore higher magnitude
residuals are much more probable at these positions than
at positions with higher index, where the variance is lower.

For the following derivations we will assume that the
residuals (not quantised) have a Laplace distribution with
zero mean. Even though the Kolmogorov-Smirnov test
shows that the distribution is not exactly Laplace, Fig. 2
shows that Laplace provides a quite good fit. Zero mean La-
place distribution has the following probability density
function (pdf):

f ðx; bÞ ¼ 1
2b

exp � x
b

� �
ð6Þ

The only parameter of the pdf is the scaling parameter b. In
order to exploit the differences in distributions, we pro-

1 In the rest of the paper ‘‘component’’ always refers to PCA component,
i.e. element of feature vector, never geometrical component.
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pose to build a different statistical model for each compo-
nent of the residual vectors, yielding N models with N dif-
ferent values of b.

The scaling parameter may be estimated for each com-
ponent by first evaluating residuals for all the possible
expansion gates. Having the total of M gates, we have M
residual vectors ri, i = 1. . .M, each of length N. From this
data, we can estimate the variance vj in each component
of the residual vectors:

Ej ¼
1
M

XM

i¼1

rj
i ð7Þ

v j ¼
1

M � 1

XM

i¼1

ðrj
i � EjÞ2 ð8Þ

From the variance we can then estimate the scaling param-
eter bj, j = 1. . .N for each of the N distributions:

bj ¼
ffiffiffiffiffi
v j

2

r
ð9Þ

The parameter bj fully specifies a zero-mean Laplace distri-
bution and its pdf. Finally, in order to evaluate the number
of bits required for a particular quantised residual value,
we need its probability, which is computed by integrating
the pdf over the quantisation interval. For a particular
component j, quantisation step d and quantised residual r̂
we get probability as:

pðj;d; r̂Þ ¼
Z r̂�dþd=2

r̂�d�d=2

1
2bj

exp � x
bj

� �
dx ð10Þ

Finally, the expected required number of bits can be ex-
pressed as:

Dðj;d; r̂Þ ¼ log2
1

pðj;d; r̂Þ

� �
ð11Þ

After some algebraic derivations, it can be shown that the
cost can be expressed as:

Dðj;d; r̂Þ ¼
aj r̂ ¼ 0
bj þ jr̂j � cj r̂–0

(
ð12Þ

aj ¼ �log2ð1� expð�d=2bjÞÞ

bj ¼
d

2lnð2Þbj
� log2ðexpðd=bjÞ � 1Þ þ 1

cj ¼
d

lnð2Þbj

Apart from the central value, the number of bits depends
linearly on the magnitude of the quantised residual. If
there was only a single distribution, then there would be
no difference between optimising residual magnitude or
the expected required bit count. However, in our case we
have to assign a cost to a vector of quantised residuals,
each from a different distribution (i.e. with a different scal-
ing factor bj). Therefore having a cost function based on
estimated required number of bits from Eq. (12) allows
us to assign a different (more precise) cost to residuals
with respect to their position in the residual vector. Over-
all, the proposed cost function Ke is defined as:

KeðgÞ ¼
XN

j¼1

D j; d; quantise pred cj
g:v4

� �
� cg:v4

� �� �
ð13Þ

6.1. Discussion

The proposed cost function we have described only uses
an estimation of actual distributions of residuals. The main
limiting factor is that we are using distribution of residuals
of all the potential gates, but the gate selection strategy
only uses a small subset of these gates (roughly one sixth),
which will probably have different (narrower) distribution
of residuals. In our experiments, the variance of actually
used residuals has been about 10–15% lower than the var-
iance of residuals of all the gates.

It is possible to compute the costs iteratively, using the
distributions of previous step to estimate the required
number of bits for the following step. We have imple-
mented such iterative algorithm, however the benefit of
that approach has been negligible in the experiments.

7. Gate selection strategy

Another key aspect of traversal order optimisation is
the selection criterion used for selecting the next gate g
from the set of open gates. It is necessary to take the gate
cost K(g) into account, however, there are more possible
algorithms of how to select a gate based on its assigned
cost.

Due to the proposed traversal strategy outlined in Sec-
tion 5, it is possible that G contains gates where the top
vertex g.v4 has already been processed. All the selection
strategies we have tested therefore first check the set G
for any such gates and process them. During the processing
of such gates no data are output into the geometry stream,
however new gates may be added into the list of open
gates G.

The simplest strategy, which has been used for the case
of static mesh encoding, is selecting the gate of lowest cost
K(g) from the list of open gates G. This approach is equiva-
lent to the selection strategies proposed by Kronrod and
Gotsman [2] and Chen et al. [3]. This strategy S1 can be ex-
pressed by following priorities:

1. If G contains a gate g where g.v4 has been already
encoded, then select g.

2. Select a gate g which has the smallest value of K(g) of all
gates in G.

Although intuitive, this strategy is not the only option and
it can be significantly improved.

It may for example happen that a particular vertex v is
difficult to predict from all possible directions, i.e. all the
gates g where g.v4 = v have a relatively high cost. This ver-
tex will, sooner or later, have to be processed, and the
strategy S1 attempts to postpone the processing of this ver-
tex as much as possible, even in the case when it encoun-
ters a gate gh which predicts v with the lowest possible
cost. If such case appears, nothing can be lost in terms of
global cost (the vertex gh.v4 will be processed at lowest
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possible cost), however something might be gained, be-
cause by processing the gate gh new gates with low cost
might open. For an example of such situation see Fig. 3.

Addressing this issue requires computing a minimum
cost for each vertex, and using it in the gate selection strat-
egy. We denote q(i) the set of all potential gates g where
g.v4 = i. For each vertex we can compute the minimum cost
needed to predict it:

KminðiÞ ¼min
g2qðiÞ

KðgÞ ð14Þ

In the strategy S2, we use following priorities for selecting
the next gate from the set of open gates G:

1. If G contains a gate g where g.v4 has been already
encoded, then select g.

2. If G contains a gate g where K(g) = Kmin(g.v4), then select
g.

3. Select a gate g which has the smallest value of K(g) of all
gates in G.

This approach can be even generalised to following strat-
egy S3, which attempts to minimise the loss caused by
selecting suboptimal gates:

1. If G contains a gate g where g.v4 has been already
encoded, then select g.

2. Select a gate g which has of all gates in G smallest value
of K(g) � Kmin(g.v4).

7.1. Discussion

It is also possible to extend the strategy S2 differently.
We might order the prediction gates in each q(i) with re-
spect to the assigned costs K(g), g 2 q(i), and use this order-
ing as a selection criterion, choosing first the gates where
no better prediction of g.v4 exists, followed by gates where
one better prediction exists, etc.

We have also implemented this approach, however we
did not obtain any significant difference between the
results of this approach and the selection strategy S3.

8. Transmitting the traversal order description to the
decoder

In the previous section we have described how gates are
selected at the encoder, however in compression we need
to know the traversal order at the decoder as well. In tra-
ditional approaches from static mesh encoding, the tra-
versal order has been driven by topology encoding
strategy (EdgeBreaker, valence-base or any other), and en-
coded in the data produced by the topology encoder
(CLERS string, valence string, etc.).

In our approach, we assume that the topology has been
transmitted already, and we only need to transmit the tra-
versal order used for geometry data. One possibility is to
encode the index of the selected gate g in the list of open
gates G. This approach however requires sending log2(kGk)
bits per vertex.

This overhead can however be significantly reduced. In
our approach, we use the fact that it is not the traversal or-
der, that influences the overall performance. Instead, it is
the selection of which gates are actually used for predic-
tion. In other words, if the decoder uses the same set of
gates, but in a different order, it will reach the same result.

Therefore, all the information the decoder needs is
which gates should be used for prediction (one bit per
gate). We also have to ensure that the encoder saves the
data into the output stream in the same order in which
the decoder will read it, however that can be easily
achieved by simulating the decoder in encoder and storing
the data in the decoding order.

Having a mesh of V vertices, we can estimate that there
will be 3V edges. In actual compression, each edge can be
traversed in only one direction, thus we have 3V gates for
which we have to encode whether or not the gate is actu-
ally used for prediction. Since V vertices have to be pre-
dicted, we can estimate the probability of true to 1/3 and
the probability of false to 2/3. The entropy of the stream
is therefore approximately 0.92 bits/symbol. The stream
has a length of 3V symbols, thus we get 2.75 bits/vertex
overhead, regardless of the total number of vertices.

Note that in the final data rate, which is usually ex-
pressed in bits per frame and vertex (bpfv), this overhead

Fig. 3. Example of different behaviour of selection strategies S1 and S2. The process starts with triangle (v1,v2,v3) known to the decoder. Strategy S1 goes for
the lowest cost gate and thus predicts position of v5 at cost 5, and then predicts v4 at cost 6, yielding the total cost of 11. The strategy S2 on the other hand
identifies that v4 can be only predicted at cost 6 or 7, and thus there is nothing to loose by first predicting the vertex v4 at cost 6, because it cannot be
predicted at any lower cost. This in turn allows predicting v5 at cost 1, yielding the total cost of 7.
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is almost negligible. For an usual mesh sequence of 200
frames, we get an overhead of approximately 0.014 bpfv.

8.1. Discussion

Since the PCA coefficients are globally uncorrelated, it
might be possible that a traversal order which is optimal
for one component will be suboptimal for another. In fact
our experiments have shown that this is the case for most
datasets, and that we can achieve further reduction of data
rate by using a different traversal order for each PCA
component.

The problem with this approach is the overhead associ-
ated with encoding the traversal order. Transmitting data
about a single traversal order has been shown to be equiv-
alent to approximately 0.014 bpfv, however transmitting
data describing N traversal orders of course requires trans-
mitting N⁄0.014 bpfv of additional overhead. In our exper-
iments, this overhead has always exceeded the savings in
data rates earned by optimising the traversal order for each
component separately.

We have also experimented with various in between
setups, such as optimising the traversal order for pairs or
larger sets of PCA components. However, for all the

datasets available, the gain of these optimisations has
never exceeded the overhead of data required for describ-
ing more than one traversal order.

9. Experimental results

We have tested all the proposed cost functions and
selection strategies and we have compared the results with
the original approach, where mesh traversal is driven by
the connectivity encoding scheme (EdgeBreaker in our
case). Our implementation uses encoding of basis vectors
described in [25].

We are evaluating bitrate R in bpfv (bits per frame and
vertex), which is obtained from the total number M of by-
tes required to encode the dynamic mesh as:

R ¼ 8 �M
F � V

ð15Þ

The error introduced by compression is evaluated accord-
ing to [12] by computing:

KGerror ¼ 100 � kB� Bk
kB� eBk ½%� ð16Þ

Table 1
Data rates for the main experiment.

Dataset S0 Kl Ke Best gain (%)

KG error (%) Rate (bpfv) S1 S2 S3 S1 S2 S3

Rate (bpfv)

Jump 0.496 0.554 0.537 0.533 0.535 0.528 0.521 0.525 5.9
Jump 0.244 1.095 1.020 1.011 1.019 1.012 1.001 1.008 8.6
Jump 0.100 2.351 2.173 2.154 2.179 2.155 2.134 2.151 9.3
Dance 0.498 0.292 0.276 0.270 0.270 0.273 0.266 0.267 9.0
Dance 0.008 1.258 1.160 1.128 1.130 1.149 1.118 1.117 11.2
Dance 0.001 2.014 1.905 1.863 1.865 1.898 1.857 1.858 7.8
Cow 0.242 2.169 1.965 1.938 1.952 1.950 1.912 1.924 11.8
Cow 0.068 4.760 4.340 4.278 4.318 4.261 4.206 4.235 11.7
Cow 0.012 9.172 8.540 8.447 8.515 8.382 8.296 8.358 9.6
Chicken 0.055 1.430 1.334 1.326 1.333 1.329 1.319 1.322 7.8
Chicken 0.017 2.045 1.922 1.912 1.919 1.913 1.900 1.907 7.1
Chicken 0.006 2.878 2.731 2.720 2.727 2.720 2.703 2.711 6.1
Humanoid 0.213 0.453 0.379 0.368 0.372 0.374 0.363 0.366 19.8
Humanoid 0.026 0.956 0.780 0.759 0.768 0.773 0.751 0.760 21.4
Humanoid 0.007 1.374 1.151 1.125 1.136 1.140 1.116 1.125 18.7
Camel 0.430 0.730 0.669 0.662 0.670 0.644 0.634 0.645 13.2
Camel 0.058 2.316 1.972 1.951 1.976 1.942 1.918 1.949 17.2
Camel 0.008 5.140 4.397 4.355 4.407 4.320 4.280 4.334 16.7
Elephant 0.279 0.704 0.696 0.677 0.678 0.662 0.643 0.652 8.7
Elephant 0.029 2.356 2.081 2.027 2.046 2.028 1.980 1.998 16.0
Elephant 0.005 4.408 3.899 3.807 3.837 3.772 3.688 3.733 16.3
Horse 0.325 1.275 1.136 1.089 1.090 1.118 1.070 1.076 16.1
Horse 0.138 2.108 1.841 1.764 1.768 1.817 1.737 1.748 17.6
Horse 0.018 4.972 4.318 4.150 4.160 4.233 4.063 4.090 18.3
Dolphin 0.289 0.316 0.248 0.233 0.234 0.246 0.230 0.231 27.4
Dolphin 0.034 1.135 0.865 0.816 0.815 0.860 0.804 0.805 29.1
Dolphin 0.006 3.109 2.444 2.308 2.310 2.394 2.207 2.212 29.0
Mocap 0.366 0.238 0.211 0.202 0.202 0.207 0.198 0.198 16.9
Mocap 0.029 0.896 0.789 0.757 0.758 0.770 0.741 0.746 17.3
Mocap 0.003 2.544 2.333 2.267 2.270 2.259 2.207 2.217 13.3
Walk 0.342 0.154 0.154 0.150 0.150 0.148 0.144 0.145 6.2
Walk 0.012 0.887 0.813 0.789 0.789 0.797 0.777 0.781 12.3
Walk 0.003 1.728 1.593 1.553 1.554 1.558 1.528 1.534 11.6

Gain (%) 10.4 12.6 12.2 11.9 14.2 13.6

L. Váša / Graphical Models 73 (2011) 218–230 225



Author's personal copy

where B is a matrix of original coordinates of all vertices in
all frames, B is the matrix of decoded coordinates and eB is a
matrix of the same dimensions, where the values have
been replaced by per-frame averages. Also note that the
original definition of this metric does not define which ma-
trix norm is used for the computation. We are using the
Frobenius norm, which is generally used by other papers
dealing with dynamic mesh compression.

This error metric has been chosen so that we can com-
pare our results with competing algorithms. However, this
norm suffers from a number of drawbacks, such as poor
correlation with human perception of mesh distortion. In
the future, we would like to test our approach using a more
elaborate error metric, such as the STED metric [28].

Table 1 summarises our main experiment with 11 data-
sets,2 each tested at low, medium and high data rates. We
are only showing bitrates for each combination of cost func-
tion and gate selection strategy, because the difference in
introduced error has been found negligible (average differ-
ence of 0.0116% for all the experiments, maximum differ-

ence of 0.173%). We denote the selection by connectivity
encoder S0, and we use it as a reference.

The table shows that we are achieving a reduction of
data rate by 5.9–29.1% with respect to selection by connec-
tivity encoder. The average data rate reduction is 14.2%.
The cost function Ke outperforms the cost function Kl by
up to 5.3% (1.92% on average), and in all cases Ke provides
better results than Kl. Also the selection strategy S2 clearly
outperforms the selection strategy S1, up to 7.8% reduction
of data rate is achieved (2.65% on average).

Quite surprisingly, the most sophisticated selection
strategy S3 does not bring any further improvement, and
in some cases it in fact degrades the performance. We have
evaluated the sum of ‘‘losses’’ K(g) � Kmin(g.v4), for both
strategies S2 and S3. We have found that in fact the selec-
tion strategy S2 produces results with slightly lower sum
of losses, even though S3 is directly focused on minimising
it. Our explanation is that neither of the strategies guaran-
tees to globally minimise its target, and the strategy S2

wins by not making mistakes (i.e. accepting edges where
no better prediction exists) and using a more courageous
approach when the cost is low, as opposed to strategy S3,
which plainly ’’plays safe’’.

Table 2
Amounts of data required to encode the feature vectors.

Dataset S0 Kl Ke Residuals gain (%)

S1 S2 S3 S1 S2 S3

C (MB)

Jump 1.641 1.541 1.528 1.535 1.509 1.489 1.500 9.3
Jump 3.277 2.981 2.951 2.979 2.954 2.919 2.942 10.9
Jump 6.985 6.345 6.281 6.363 6.283 6.213 6.271 11.1
Dance 0.299 0.259 0.252 0.253 0.255 0.246 0.248 17.6
Dance 1.399 1.247 1.206 1.208 1.234 1.192 1.192 14.8
Dance 2.279 2.114 2.059 2.060 2.104 2.050 2.052 10.1
Cow 0.845 0.722 0.706 0.715 0.713 0.692 0.698 18.1
Cow 1.893 1.647 1.612 1.635 1.603 1.571 1.588 17.0
Cow 3.727 3.361 3.308 3.347 3.271 3.223 3.258 13.5
Chicken 1.047 0.928 0.920 0.927 0.923 0.911 0.915 13.0
Chicken 1.550 1.400 1.388 1.397 1.390 1.375 1.383 11.3
Chicken 2.164 1.988 1.974 1.982 1.975 1.955 1.964 9.7
Humanoid 0.461 0.356 0.344 0.349 0.352 0.339 0.343 26.3
Humanoid 0.978 0.759 0.736 0.745 0.751 0.727 0.737 25.6
Humanoid 1.412 1.140 1.112 1.124 1.129 1.102 1.111 21.9
Camel 0.691 0.570 0.564 0.571 0.545 0.535 0.546 22.5
Camel 2.222 1.818 1.797 1.823 1.788 1.765 1.795 20.6
Camel 4.991 4.187 4.146 4.198 4.110 4.071 4.125 18.4
Elephant 1.309 1.184 1.152 1.152 1.116 1.082 1.099 17.3
Elephant 4.442 3.802 3.702 3.737 3.699 3.607 3.642 18.8
Elephant 8.366 7.272 7.097 7.156 7.025 6.864 6.951 18.0
Horse 0.442 0.366 0.348 0.349 0.359 0.341 0.343 22.9
Horse 0.747 0.621 0.592 0.593 0.612 0.581 0.586 22.2
Horse 1.797 1.522 1.458 1.461 1.490 1.424 1.435 20.8
Dolphin 0.173 0.116 0.108 0.108 0.115 0.106 0.106 39.1
Dolphin 0.625 0.449 0.419 0.419 0.446 0.412 0.412 34.1
Dolphin 1.711 1.299 1.218 1.219 1.269 1.158 1.161 32.3
Mocap 0.745 0.606 0.576 0.578 0.595 0.562 0.563 24.6
Mocap 2.829 2.402 2.289 2.293 2.335 2.230 2.249 21.2
Mocap 7.938 7.133 6.897 6.910 6.871 6.681 6.719 15.8
Walk 0.868 0.781 0.760 0.760 0.746 0.721 0.725 16.9
Walk 5.149 4.589 4.439 4.441 4.492 4.368 4.390 15.2
Walk 10.057 9.107 8.859 8.866 8.890 8.697 8.735 13.5

Gain (%) 14.7 17.1 16.5 16.4 18.9 18.3

2 most of the datasets can be downloaded from http://compression.kiv.
zcu.cz.
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The Table 2 shows the results of the same experiment
(i.e. with the same distortions as in Table 1), however this
time only considering the amount of data needed to en-
code the feature vectors, i.e. without the other necessary
data, such as connectivity information or description of
the PCA basis. This table reflects more precisely the effi-
ciency of the optimised traversal. The amount of data
needed to encode the feature vectors is reduced by 19%
on average.

We have also tested the amount of improvement
achieved by the traversal optimisation in relation with
the roughness of quantisation. The quantisation is usually
expressed as a number of bits per volume diagonal, how-
ever in our experiments we have used a more illustrative
parameter k based on average edge length. Having the
average length of all edges in all frames of the animation
E(l), we obtain a quantisation step from the user-specified
parameter k as:

Q ¼ EðlÞ
2k

: ð17Þ

Using this definition, k can be interpreted as number of bits
per average edge length, which gives a quite good idea on
the effect of a particular value. Note that k can be negative,
and that low values of k, such as 0 or 1, do not indicate a
too rough quantisation, because the quantisation step Q
is used to encode feature vectors, and therefore the intro-
duced quantisation error is spread over all the frames of
the animation. Figs. 7 and 8 show the improvement
achieved by different versions of traversal optimisation
on two datasets with respect to the quantisation parame-
ter k. Note that together with quantisation parameter k
we have also adjusted the number of used basis vectors
N in order to obtain an optimal configuration for each mea-
surement [29], and therefore the figures are also influ-
enced by the varying number of basis vectors. This is
however necessary, since using a constant number of basis
vectors with varying quantization would produce mean-
ingless results, suboptimal in all but one point.

The slowdown caused by increased complexity of mesh
traversal is shown in Table 3. The table shows that using
the most efficient combination of selection strategy S2

and cost function Ke we obtain a slowdown of 5.1–14.6%
for compression. The cost function Ke is generally slower,
due to the more complex computation of estimated distri-
butions. On the other hand, the selection strategy S1 works
in our implementation slower than S2, because in S1 we
need to select a best gate from the whole list of open gates,
whereas in S2 a gate might be selected before the whole list
has been processed. The strategy S1 could be optimised by

employing a better data structure, however for practical
cases the more efficient strategy S2 is a better choice, be-
cause its slowdown is relatively low (in one case it is in fact
faster than the reference S0, due to smaller residuals which
are in turn processed faster by the arithmetic coder). The
decompression times are only affected by the addition of
decoding and applying the particular traversal order se-
lected by the encoder, and therefore it is independent on
the used selection strategy and cost function. In our exper-
iments the slowdown of decompression has been negligi-
ble (<0.1% for all the tested cases).

It is difficult to compare the processing time with the
FAMC algorithm, since its authors do not publish any tim-
ings. Our reimplementation of FAMC however works at
least an order of magnitude slower than the times reported
in Table 3. On the other hand, our method is about three

Table 3
Timings for various settings and various datasets.

S0 (ms) S1 S2

Kl Ke Kl Ke

(ms) (%) (ms) (%) (ms) (%) (ms) (%)

Dance 11,131 11,508 3.4 11,833 6.3 11,229 0.9 11,698 5.1
Cow 7658 7720 0.8 8731 14.0 7628 �0.4 8642 12.9
Jump 25,907 32,053 23.7 33,933 31.0 27,091 4.6 29,690 14.6

Fig. 4. Rate-distortion curve for the cow sequence.

Fig. 5. Rate-distortion curve for the horse gallop sequence.
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times slower than the SPC algortihm [30], which however
offers a much worse rate-distortion ratio.

Finally, we have compared the rate-distortion results
with the state of the art algorithm, the MPEG-4 standard
FAMC (we are comparing against the ‘‘download’’ version
of the algorithm, which should provide the best achievable
performance in the terms of rate-distortion ratio). Figs. 4–6
show that our algorithm outperforms the standard signifi-
cantly. Also note that the results of the FAMC algorithm
have been taken over from [30].

10. Conclusion

We have presented an extension of dynamic mesh
encoding algorithm based on PCA in the space of trajectories.

Fig. 7. Compression improvement with respect to quantisation for the Elephant dataset. Note that for low values of k traversal optimisation actually
worsens the performance unless the cost function Ke is used. Similar behaviour has been observed with other datasets as well.

Fig. 6. Rate-distortion curve for the dance sequence.

Fig. 8. Compression improvement with respect to quantisation for the Mocap dataset.
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Our main contribution is showing that traversal order opti-
misation provides a significant reduction of required data.
We have shown that region growing algorithm can be mod-
ified using various selection strategies and cost functions,
and we have proposed an improved selection strategy and
an improved cost function, that provide significantly better
results than using the straightforward approach of selecting
the gate with the smallest residuals.

Our improvement reduces the required data rate by
5.9–29.1% by reducing the amount of data required to en-
code feature vectors by 9.3–39.1%. Best results are ob-
tained when processing irregular meshes, where each
vertex can be predicted from multiple directions with
varying accuracy. We expect that most meshes where stor-
age/transmission data rate is an issue will have this prop-
erty, since in such case the data will probably first undergo
some kind of simplification process, which usually pro-
duces irregular meshes.

The application of the proposed optimisation is not lim-
ited to the example examined in this paper. Equivalent
optimisation can be used for static mesh encoding, where
we expect a good improvement using the proposed selec-
tion strategy S2. Also dynamic mesh encoding using mesh
simplification as a means to achieving scalability [24,19]
can benefit from traversal order optimisation, especially
because simplification usually reduces regularity of the tri-
angles, which is the defining factor for the efficiency of the
proposed optimisation.

In the future we would like to experiment with other
cost functions, as well as other error metrics. We would
also like to experiment with other, possibly non-symmet-
ric predictors, because since our approach does not at-
tempt to interpret the task as a minimum spanning tree
problem, it is possible to work with non-symmetric predic-
tors in a straightforward way.

Another interesting topic might be extending the tra-
versal order optimisation to the multi-gate prediction
schemes, such as the Dual Parellelogram Prediction
scheme by Sim et al. [31], Average Parallelogram Predic-
tion by Cohen-Or et al. [32] or their generalisation in the
form of Taylor prediction by Courbet and Hudelot [33].
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