
Computer-Aided Design ( ) –

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Perception-driven adaptive compression of static triangle meshes✩

Stefano Marras a,∗, Libor Váša b, Guido Brunnett b, Kai Hormann a

a Università della Svizzera italiana, Lugano, Switzerland
b Technical University Chemnitz, Chemnitz, Germany

h i g h l i g h t s

• New adaptive compression method based on shape perception.
• Suitable for both single rate and progressive encoding.
• Works with any kind of perceptual error metric.
• Improvement with respect to most commonly used approaches.
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a b s t r a c t

Mesh compression is an important task in geometry processing. It exploits geometric coherence of the
data to reduce the amount of space needed to store a surfacemesh.Most techniques perform compression
employing a uniform data quantization over the whole surface. Research in shape perception, however,
suggests that there are parts of the mesh that are visually more relevant than others. We present a novel
technique that performs an adaptive compression of a static mesh, using the largest part of the bit budget
on the relevant vertices while saving space on encoding the less significant ones. Our technique can be
easily adapted to work with any perception-based error metric. The experiments show that our adaptive
approach is at least comparable with other state-of-the-art techniques, while in some cases it provides a
significant reduction of the bitrate of up to 15%. Additionally, our approach providesmuch faster decoding
times than comparable perception-motivated compression algorithms.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Mesh compression algorithms deal with the problem of effi-
ciently storing surface meshes, which mainly consist of triangles.
Usually a certain loss in the precision of the data is allowed in or-
der to achieve a smaller size of the compressed data. The task at
hand is to encode the given mesh with smallest possible distor-
tion, that is, to represent the input triangle mesh M with a short-
est possible sequence of bits, from which a reconstruction M̄ can
be decoded,while the difference d(M, M̄) is lower than someuser-
defined constant. Usually, mesh connectivity and mesh geometry
are encoded separately. The connectivity encoding is lossless and
efficient algorithms have been proposed that work near the theo-
retical performance limit [1].
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Mesh compression plays the key role in several industries,
such as computer aided design, in film and gaming industry, e-
marketing and many others. The specifics of a particular applica-
tion area play a key role in designing a compression algorithm. In
general, there are two main scenarios where mesh compression
is required: storage of surface models for further computer-aided
processing, and storage of triangle meshes for viewing by human
observers. These two scenarios pose radically different require-
ments on the desired properties of the algorithm.

When storing meshes for further processing, it is desirable to
keep the precision loss at a minimum, since the following steps
may emphasize some compression artefacts that are on the verge
of being visible at the current stage. The allowed precision loss in
this scenario is justified and guided by the discrepancy between
the precision of acquisition (scanner accuracy) and representation
(length of mantissa of the used floating point representation of
coordinates). In this scenario, it is possible to express the loss, that
is, the function d(M, M̄), in terms of vertex displacements, and it
is desirable that both encoding and decoding are performed very
fast, since storing occurs equally frequently as decoding during the
usual workflow.
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Fig. 1. Differently perceived distortion in different parts of themesh, caused by the
same vertex dislocation.

In this paper, we are going to address the second scenario, that
is, storing meshes before the final delivery to a consumer, which
is a human observer. This is for example the case in e-commerce
(displaying a 3D model in a webshop) or gaming (storing a 3D
model on a distribution medium) applications. This scenario has
the following key properties:

• The decompressed mesh is required to be perceptually close to
the original, that is, the allowed precision loss is justified and
guided by the discrepancy between representation precision
and the level of perceptible difference. Research in perceptual
3D metrics shows that visual similarity of 3D shapes correlates
only weakly with vertex dislocations, and thus it must be
measured using different approaches.

• The computational complexity of the decompression is of much
higher importance than the computational complexity of the
compression. Similarly to video encoding, longer processing
times for encoding are acceptable, as long as the decoding can
be done in real time.

• For some applications, such as e-commerce, it might be
important to provide the user with the possibility to view a
partially decodedmesh and the possibility to stop the decoding
before the whole mesh is transmitted.

Out of these properties, the need for a perceptual metric is
probably the one that has the largest influence on the design
of a compression algorithm. Recently, a number of researchers
[2–4] have focused on the problem of estimating the visual effects
of mesh processing, including mesh simplification, watermarking,
and compression. Metrics have been proposed that correlate well
with the results of user studies in which human observers were
asked to evaluate the amount of distortion in 3D meshes. Interest-
ing phenomena have been identified and documented, such as the
masking effect (increased sensitivity of the observers to distortion
in smooth areas of themesh) and generally higher sensitivity of the
human visual system to local, relative changes in vertex positions,
contrasting with the relatively low sensitivity to global changes in
absolute vertex positions.

Mesh compression is usually applied in combination with
mesh simplification, which reduces the number of vertices
where possible. Consequently, the input data in most practical
compression tasks exhibit a rather high variability in terms of
sampling density and local smoothness. These factors contribute
immensely to the local perceptibility of compression artefacts. For
example, dislocating a vertex in a densely sampled area of themesh
can lead to a local flip of triangle normals, which is immediately
visible to any human observer. On the other hand, dislocating a

different vertex, this time in a sparsely sampled area of the mesh,
by the same amount, may be completely imperceivable (see Fig. 1).
This is the main motivation for our proposed algorithm.

Recent experiments with perceptual metrics also indicate that
even the traditional metrics based on vertex dislocations are rel-
evant for perception in some situations. Typically, when multiple
objects interact by touching (shaking hands, feet touching floor), a
too large absolute dislocation becomes observable and is perceived
as an artefact. Our secondary motivation is therefore to design the
algorithm so that the root-mean-squared error is reduced as well.

In this paper, we propose a triangle mesh compression algo-
rithm with the following key features:

• Adaptability to any error metric of choice, investing bits only
in areas where refinement is needed in order to reduce the
distortion. In particular, adaptability to perceptually motivated
metrics has been implemented and tested.

• Improved performance in traditional absolute metrics with
respect to other perception-motivated algorithms.

• Fast decoding procedure, which only involves local operations
on the trianglemesh. This allows application of our approach for
larger meshes, where the decoding computational complexity
makes competing algorithms impractical.

• Progressive decoding support.

Our algorithm builds on the parallelogram-based prediction
strategy, but only uses this approach to build a coarse reconstruc-
tion of the mesh. Subsequently, an error metric of choice is used to
determine where refinement bits are required in order to suppress
perceivable artefacts. Our procedure is able to exploit the spatial
coherence of mesh vertices by using the efficient parallelogram
prediction for high-order bits, and at the same time it is able to
distribute the bit budget efficiently across parts of the mesh that
have different properties.

2. Related work

Mesh compressionhas been in the focus of researchers formany
years. Many algorithms have been proposed, building on various
concepts, and providing different properties and performance.

One of the first attempts at mesh compression is the Topological
Surgery algorithmby Taubin and Rossignac [5]. It encodes themesh
connectivity represented by a vertex spanning tree and a triangle
spanning tree. Themesh geometry is then encoded during a traver-
sal of the vertex spanning tree, using a local prediction that exploits
the spatial coherence in positions of neighbouring vertices.

Touma and Gotsman later proposed a more efficient connectiv-
ity encoding, based on storing vertex valences [6]. This approach
has been extended [7] and related to theoretical bounds of loss-
less connectivity encoding [8,1]. Other mesh connectivity encod-
ing schemes have been proposed as well, such as the EdgeBreaker
scheme [9] with a guaranteed upper bound on the number of bits
per vertex, the cut-border machine [10] or triangle-fan-based en-
coding [11], and progressivemeshes [12] for progressively transmit-
ting a mesh.

Several approaches have been proposed for the geometry
encoding as well. Probably the best known approach is the
parallelogram prediction, proposed by Touma and Gotsman [6].
The key idea is to traverse the mesh, expanding the part known
to the decoder by one vertex at a time. The vertex is then predicted
to lie at the tip of a parallelogram expanded from a known adjacent
triangle. This approach has been applied togetherwithmany of the
connectivity encoding approaches, where in some cases it can be
used in a single mesh traversal that encodes themesh connectivity
and geometry simultaneously.

Several improvements of the parallelogram scheme have been
proposed in order to improve its performance while preserving its



S. Marras et al. / Computer-Aided Design ( ) – 3

Fig. 2. Flowchart of the encoding process.

desirable properties, such as simplicity, locality, and low computa-
tional cost. Sim et al. [13] proposed using two parallelograms at the
same timewhenever it is possible to performaprediction from two
adjacent triangles. Courbet and Hudelot [14] generalize the par-
allelogram predictor to a more general Taylor prediction scheme.
Recently, Váša and Brunnett [15] proposed using a weighted par-
allelogram scheme, building on an estimate of the interior angles
of the triangles involved in the prediction.

Apart from extensions of the parallelogram prediction, several
approaches have been proposed for geometry encoding, building
on different concepts. Peng and Kuo [16] use an octree structure
to encode the vertex positions in a way similar to our proposed
algorithm, however their rules for the octree structure refinement
are globally set and do not follow specific goals with respect to
any perceptual error metric. Payan and Antonini [17] use wavelet
decomposition to perform a frequency analysis of the geometry
data. Similarly, Karni and Gotsman [18] find a set of eigenfunctions
of the discrete combinatorial Laplacian of the mesh connectivity,
and express the geometry in terms of this basis.

Sorkine et al. [19] proposed an approach based on discrete
Laplace transformation, using the Kirchhoff Laplacian. The trans-
formed vertex coordinates (denoted delta coordinates) are then
quantized and transmitted to the decoder together with the posi-
tions of several so-called anchor points, which allow inverting the
procedure, reconstructing the original coordinates from the delta
coordinates. Note that many of the more advanced approaches
are muchmore computationally expensive than the parallelogram
based methods, requiring to solve a large sparse system of linear
equations [19] or a large eigen-decomposition problem [18] at the
decoder.

Apart from the so-called single-rate algorithms, which only
allow decoding the mesh at a single quality level, algorithms have
been also proposed that provide a series of approximations with
increasing quality (number of vertices, vertex position precision)
from a single data stream. This additional functionality usually
comes at the cost of impaired absolute performance with respect
to the single rate encoders [12], although recent work reports
comparable results [20–22].

For quite a long time, the amount of distortion introduced by
compression has been either measured as a sum of magnitudes
of vertex dislocations, or using the Hausdorff distance. Although
thesemeasures are intuitive, it has been noted in [18,19] that these
measures do not reflect the perceived amount of distortion. In
order to alleviate the problem, the so-called visual error has been
proposed in [18] and later slightly updated in [19].

Recently, however, more serious effort has been invested into
the search for a mesh metric that correlates well with human
evaluation of mesh distortion. It has been noted, that although the
visual error represents an improvement over traditional measures,
such as mean squared error (MSE) or Hausdorff distance, it
still provides only a rather weak correlation with perception,
especially in experiments where multiple types of distortion (for
example stemming from various types of compression methods)
are compared against each other.

This has motivated the emergence of several mesh comparison
methods, aiming at providing a better estimate of mesh quality.
Approaches based on curvature differences [3], roughness differ-
ences [23] and dihedral angle differences [4] have been proposed,
providing high correlation with results captured in user studies.
For a summary and comparison of these methods, we refer to a re-
cent study of this topic by Corsini et al. [24].

3. Algorithm

The main idea behind our approach stems from the following
observations:
• All perception-driven metrics tend to evaluate the visual error

on a local neighbourhood of a vertex, edge, or face of the mesh.
• The visual error is usually not uniformly distributed over the

surface of the mesh and the same vertex displacement can
be perceived differently in different regions of the mesh (see
Fig. 1).

Our aim is to distinguish between high error and low error regions,
investing a different amount of bits to encode them. Regionswhere
the error is small will be encoded with fewer bits, while regions
where the error is higher will consume more bits. We assume that
the mesh connectivity is encoded using any efficient connectivity
coder, and that it is available at the decoder. Our algorithm stores
the input mesh in terms of a base mesh, which is a low-precision
version of the source mesh, plus a set of refinement bits, which
improve the visual quality of the shape in the areas where such
improvement is needed. We use an octree data structure to select
an appropriate precision for each vertex. The vertex precision is
represented by its depth in the tree, which is also encoded as
auxiliary data. Note that the octree structure is only used as a
temporary representation of the data, and it is not used to encode
the mesh geometry or connectivity as done in previous work [16].

We first focus on how to build the geometry of the base mesh
and the refinement bits, and then we describe in more detail how
each of the two parts is encoded. The algorithm is summarized in
Fig. 2.
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Fig. 3. The steps of the algorithm for the Hippo mesh. Initially, a coarse mesh
(a) is obtained after 4 split operations of the octree root. Then, according to the
DAME metric, vertices belonging to large and flat regions are refined first (b), thus
significantly reducing the overall error. The precision of the remaining vertices is
later iteratively increased (c) until the final configuration, corresponding to the
target error, is reached (d).

3.1. Coarse mesh construction

The inputs of our algorithm are: a static mesh M, a visual error
metric, and a target error value. In order to encode the mesh, we
proceed in the following way. First, we find the minimum cubic
bounding box containing M. We associate the bounding box with
the root node of a common octree. In the beginning, the vertices
of M are associated with the root node, since they all lie inside
the bounding box. A split operation of an octree node subdivides
the node into 8 child nodes and subdivides the ancestor cell into
8 equally sized cubic cells, one for each child node. The vertices
belonging to the ancestor node are distributed among the child
nodes according to their spatial position. To distinguish between
the children, we assign to each new node a unique 3-bit binary
code, from 000 to 111.

In the first phase of the process, we build a coarse version of
M by recursively splitting the root node until a fixed depth t is
reached for each node and thenmoving each vertex to the centre of
the cell where it lies. At the end of this phasewe have ameshwhich
is usually characterized by both a high objective and subjective
error, with many vertices belonging to the same node collapsed to
a single point (see Fig. 3). Each vertex is associated with a leaf and
each leaf is characterized by its depth value plus a string of 3t bits
that uniquely identifies it, which is the juxtaposition of the binary
codes describing the path from the root to the leaf. The value t is
usually selected between 2 and 5.

3.2. Refinement loop

As mentioned above, the coarse mesh is usually characterized
by a large visual error, paired with an objective error, that is,
the displacement in vertex positions (see Fig. 3). Here is where
the refinement comes into play. The coarse mesh is compared
to the source mesh M by evaluating the error according to the
selected metric. Each element of the mesh (vertex, edge, or face)
is then characterized by a certain amount of distortion. While
objective metrics tend to uniformly distribute the error over the
whole surface, for perceptually-motivated metrics, such as the
KG-error [18], MSDM [2,3], FMPD [25], and DAME [4], the error
is higher in the perceptually relevant regions and lower in the
remaining parts of the surface.

We therefore select α% of the mesh elements, characterized by
the highest error values, with α usually between 1 and 10. The idea
is to reduce the global error by refining only the selected elements,
increasing the precision of the regions that were identified as
highly distorted by the error metric. To increase the precision of

a vertex, we split the node it belongs to, therefore increasing the
depth of thenode andbringing its vertices closer to their position in
the original mesh. The closer the vertices are to their final position,
the lower the associated distortion gets. After the cells have been
refined, we move the vertices to the centre of their cells and
compare the newly refined mesh against M, that is, we recompute
the error characterizing each element. We continue to iteratively
refine themesh until the global error reaches the given target error
value.

The results of different steps of the process are depicted in
Fig. 3. The efficiency of the refinement loop can be improved by
using a priority queue, sorted according to the local error, and by
updating only the error of the previously refined elements. We can
alsomodify the refinement condition by imposing amaximum tree
depth, thus avoiding vertex over-refinement.

3.3. Laplacian smoothing

At the coarsest levels it is quite common to have a large num-
ber of duplicate vertices and zero-length edges. These artefacts are
usually responsible for high visual errors. In order to reduce the
distortion, we perform a post-processing step to enhance the qual-
ity of the mesh. In particular, a constrained Laplacian smoothing is
applied to the reconstructed surface in the following way.

For each vertex vi we compute

ci =
1
ni


j∈Ni

pj and di = ci − pi,

where pi is the spatial position of vi and Ni is its one-ring
neighbourhood with cardinality ni. The aim of the smoothing step
is to adjust the position of each vertex vi while keeping each vertex
inside its cell. To determine the final position of vi, we displace pi
by the amount of λi along di. We initially set λi = 1 and get the
candidate position p′

i = pi + λidi. If p′

i lies inside the cell of pi,
we move the vertex to its final position, otherwise we halve the
value of λi and recompute p′

i , iterating the process until we find
a valid candidate position. All vertices are translated to their new
positions at the same time. If required, the smoothing step can be
executed iteratively, even though one or two iterations are enough
inmost cases. A comparison between different levels of smoothing
of the same mesh is depicted in Fig. 4.

Laplacian smoothing significantly reduces the visual distortion,
especially at the coarser levels, while exploiting all the information
known about the vertex positions (represented by their cell
boundaries) and keeping the displacement error bounded. Vertices
that are perceptually relevant are characterized by higher depth,
which means smaller cells and, as a consequence, a smaller
freedom in the displacement. However, after a certain level of
precision is reached, the cells become too small and the smoothing
no longer significantly affects the quality of the results. Notice
that the smoothing step does not require storing any additional
data, apart from the number of iterations, since it is based on a
purely combinatorial Laplace operator. Fig. 5 shows the impact of
Laplacian smoothing on a typical rate–distortion plot.

3.4. Encoding

At the end of the refinement process, each vertex vi is
characterized by a bit-string of length 3di where di is the depth
of the leaf containing vi. Since different leaves may have different
depths, the lengths of the strings are usually different from vertex
to vertex. Vertices that have been refinedmultiple times and hence
belong to high-error regions of the mesh are characterized by a
higher number of bits.

In general, the depth distribution over the tree for a target error
(see Fig. 6) exhibits a peak in themiddle, with only a fraction of the
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a b c

Fig. 4. Effect of smoothing for the Samba dataset. The mesh (a) is obtained by
shifting the vertices to the centres of their octree cells, and it is affected by visual
artefacts. A first iteration of the constrained Laplacian smoothing, (b) significantly
reduces the visual error (30% in KG error, 45% in DAME error), making the mesh
more visually pleasing. A second iteration (c) further improves the quality of the
shape, but this time the error reduction is smaller (only 5% in the KG error, 31% in
the DAME error).

Fig. 5. Constrained Laplacian smoothing affects the rate–distortion plot of the
horse dataset. Particularly, while only marginally affecting the objective error
(top), it significantly reduces the perceptual error (bottom). We also compare the
constrained Laplacian smoothing against the standard, unconstrained Laplacian
smoothing. While the two approaches produce similar results at coarser levels,
the unconstrained smoothing fails to converge to the original shape. In fact, the
displacement of the verticesmakes it impossible to further reduce the error in terms
of both RMSE and DAME. This is the main reason behind our choice of constraining
the displacement inside the cells.

vertices actually requiring further refinement. At the same time,
there is a subset of vertices that do not require to be extremely
refined, in the sense that increasing the precision of their position
will not significantly affect the measured error. Therefore, these
vertices are characterized by a smaller depth.

We select a depth value k, usually corresponding to the integer
round of the average depth, as level of depth of the so-called base
mesh. That means that the first k bits of each string associated with

Fig. 6. Depth distribution for vertices of the James mesh (cf. Fig. 7), as the result
of our adaptive compression, optimized for a DAME error of 0.001. The depth of
the tree nodes is spread between 6 and 15, with a peak at depth 10. The average
depth is 10.15, which means that, on average, each vertex requires about 30 bits to
be stored. Encoding the samemesh, at the same distortion, using the parallelogram
technique requires about 33 bits per vertex. The depth distribution over the surface
is depicted in Fig. 7.

Fig. 7. Colour-coded depth distribution over the James mesh as a result of the
adaptive compression, optimized for the DAME error. Parts of the shape that
are characterized by low visibility, such as the eyes, usually have a small depth.
Parts that are not visible at all, such as the interior of the shoe, are characterized
by minimal depth, since their contribution to the error is basically zero. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

a vertex are used to encode the base mesh, while the remaining
bits become the refinement. If a vertex has a bit-string with less
than k elements, the string is extended by adding 0-bits until the
length k is reached. These bits are used for encoding purposes
only and do not have any influence on the final placement of the
vertices, while only marginally affecting the compression rate. It is
important to remark that the base mesh is usually different from
the coarse mesh built at the beginning of the process, which is
usually significantly coarser.

Obviously, the depth of each vertex depends onhoweach vertex
affects the error computation. TheDAMEmetric, for example, gives
a low score to vertices that are not visible, while the FMPD metric
gives a low score to vertices in flat regions. Fig. 7 shows the depth
distribution over the surface of a mesh for the example in Fig. 6.

To encode the basemesh,we split each bit-string into 3 separate
strings, representing the path of the vertex along the x-, y- and
z-axis, then interpreting each sequence as an integer value. Each
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vertex is therefore characterized by three values corresponding
to its spatial coordinates. The base mesh is encoded using a
standard parallelogram predictor technique, applied directly on
the integer values. The prediction residuals are binarized using
the exp-Golomb code and encoded by a context adaptive binary
arithmetic coder (CABAC) [26],which exploits their strongly biased
distribution.

We then proceed with encoding the refinement bits, iteratively
visiting the vertices of the mesh and storing, for each vertex, the
first not-processed bit (if any). At the end of each iteration, the
bits are encoded again using the CABAC coder. Note that the used
prediction only influences (biases) the probability distribution of
the higher order bits, that is, the ones that make up the base
mesh. The refinement bits, on the other hand, have an almost
unbiased probability distribution and regardless of whether a
parallelogram-like prediction had been applied to them or not.

Finally, we need to additionally encode and transmit depth
information in order to provide all the necessary information to
the decoder. Depth information is encoded in the parallelogram
prediction fashion. Additional information, such as the size of the
bounding box, its centre, and the number of smoothing iterations,
is transmitted without quantization, but it does not significantly
affect the final compression rate.

3.5. Decoding

The decoding process is significantly faster than the encoding
step, since it does not involve the evaluation loop. The decoder
receives and decodes, in a single pass, both depth information
and integer values representing the coordinates of each vertex up
to depth k. In case a vertex is characterized by a depth smaller
than k, we simply discard the unused bits. Each integer is then
converted to a binary code, using both the decoded information
and the remaining refinement bits.

The advantage of the decoding step is that it does not need
to build the full octree to recover the final positions of the
vertices. Suppose that we decoded a sequence of d bits bx1, . . . , b

x
d,

representing the path from the root of the tree to the final node
along the x-axis. We also decoded the length of the cubic bounding
box edge l. The x-coordinate px is computed as

px =


d

i=1

bxi
l
2i


+

l
2d+1

,

with the last term representing the shifting to the centre of the
cell. Following the same procedure, we recover also the y- and z-
coordinates. To speed up the decoding process, we precompute
all the possible values of l/2i once, up to the maximum sequence
length. The bounding box of the mesh is centred in the origin,
therefore a translation may be required to reach the correct
position of the shape.

When all vertices have been placed, the Laplacian smoothing is
performed for a given number of iterations. Again, the constrained
Laplacian smoothing is performed without explicitly building the
octree, bounding the maximum displacement in vertex position
according to the depth of the vertex.

4. Results

In this section we present the results of our algorithm in
terms of rate–distortion (R–D) plots. We mainly focus on the error
evaluated in terms of visual distortion. Although various texturing
techniques are often used to support efficient mesh simplification,
we focus solely on geometric error metrics. Nevertheless, our
algorithm supports using any, even image-based error metrics,
provided that the error can be evaluated locally on each vertex,

edge, or face, and therefore it could generally also be used to drive
mesh compression with texture. Our technique also outperforms
other existing approaches in terms of objective error, measured as
root-mean-squared error (RMSE) of vertex positions, even though
the algorithm is not optimized in that sense.

In our experiments we employ the original Karni–Gotsman
error (KG) [18], the Dihedral Angle Mesh Error (DAME) [4], and the
Fast Mesh Perceptual Distance (FMPD) [25]. All thesemetrics focus
on perceptual error, with the partial exception of the KG metric,
which also takes into account the absolute vertex displacement.
The meshes we use in our experiments are from the Aim@Shape
repository and the dataset in [27].

The KG metric measures the error related to vertex vi as the
average of its absolute displacement and of a distortion of a visual
component called smoothness. The smoothness of vi is computed
as

s(vi) = pi −


vj∈Ni

l−1
ij pj

vj∈Ni

l−1
ij

,

where Ni is the one-ring neighbourhood of vi, pj represents the
spatial coordinates of vertex vj and lij is the length of the edge
connecting vi and vj. Given a mesh M and an encoded mesh M̄
with n vertices, the KG error is computed as

dKG(M, M̄) =
1
n

n
i=1


∥pi − p̄i∥ + ∥s(vi) − s(v̄i)∥


.

In order to reduce the smoothness error of a particular vertex vi,
it is necessary to increase its depth and the depth of its one-ring
neighbours. Therefore, at each iteration, we select the α% vertices
characterized by highest error plus their neighbours, whichmeans
that on average we refine 7α% of the vertices. Fig. 8 presents
a comparison between the KG-optimized adaptive encoding,
the parallelogram predictor [6], and the high-pass quantization
technique [19] with 50 anchors points, on a mesh with about 10k
vertices, with α = 5. The plots show that our technique is better
than both of them in terms of KG error. If we have a closer look
at the absolute displacement in vertex positions, we can see that
even if the compression is optimized for the KG error, we achieve
an improvement in terms of RMS error as well. This is no surprise,
since, by construction, the error in vertex displacement is bounded
by the size of the cells associated to the leaves of the tree. On the
other hand, the smoothness term of the KG error shows that, in
general, high-pass quantization produces visually better results.
The RMS error is computed using the METRO tool [28].

The DAME metric focuses instead on the difference in dihedral
angles between the source mesh M and the decoded mesh M̄. The
error is computed as

dDAME(M, M̄) =
1
E


eij∈M

∥θij − θ̄ij∥mij(wi + wj),

where E is the total number of edges of M, θij is the signed dihedral
angle of the edge eij connecting vi and vj,mij is a term that penalizes
distortion in flat regions, and wi, wj are the so-called visibility
weights associated to vi and vj, depending on the position of the
vertices on the surface of the mesh. In order to reduce the DAME
error, we select the α% of the edges characterized by the highest
error in terms of dihedral angle difference, but we also take into
account the penalty term and the visibility weight. However, since
both the penalty term and the visibility weights are computed
only on M, we focus on reducing the difference in dihedral angles
of corresponding edges. The computation of the dihedral angle
involves the 4 vertices of the faces incident to eij, so for each
selected edge we refine 4 vertices. Each iteration refines 12α% of
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Fig. 8. R–D plots for the adaptive compression of the Hippo dataset (22,260 vertices), optimized for the KG error. Plot (a) shows that the proposed approach effectively
outperforms both [6,19]. However, if we focus on the components of the metric, it can be seen that, while our approach produces the best results in terms of objective vertex
displacement measure (b), the visual component of the error is between the other methods (c).

Fig. 9. R–D plots for the adaptive compression of the Dance dataset (7061 vertices), optimized for the DAMEmetric. Plot (a) shows that our approach fails to overcome [19]
in terms of visual quality, but it significantly improves [6]. As a side-effect, the DAME optimization has an effective impact on the KG error (b) and on the FMPD error (c).

Fig. 10. R–D plots for the Homer dataset (5103 vertices, shown in Fig. 2).

the total number of mesh vertices. In our experiments, α is usually
set to 2.5.

Finally, the FMPD metric measures the distance between two
meshes as a combination of both local and global roughness error
terms. For each vertex of the mesh, the local roughness is defined
as

L(vi) =

Ki +


vj∈Ni

dijKj

dii


where Ki is the Gaussian curvature at vertex vi and dij is the
coefficient of the (i, j) entry of the cotan-Laplacian matrix of the
mesh. A global roughness term G is computed as the integral of L
over the surface of themesh, and the distance between twomeshes

is finally computed as

dFMPD(M, M̄) = |G − Ḡ|.

Each iteration of the framework requires to refine the central
vertex vi and its one-ring neighbours, thus reducing the local
roughness term but also slightly affecting the global roughness. As
happens for the KG-driven optimization, we refine on average 7α%
of the vertices per iteration, with α usually set to 5.

In general it can be noticed that optimizing for one metric
improves the R–D plots also for other metrics, as depicted in Fig. 9.
In Figs. 10 and 11we present a comparison between three different
optimizations and the other techniques in terms of both objective
and subjective error measures.

To give a better idea of the results of our technique,we present a
visual comparison in Fig. 12. Ifwe focus on the visual error only, our
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Fig. 11. R–D plots for the Samba dataset (9971 vertices, shown in Fig. 4).

Fig. 12. The source Horsemesh (left) is encoded at a bitrate of 4.5 bits per vertex using different techniques. Themesh compressed using [6] is visibly affected by the uniform
quantization (a) and appears to be ‘‘blocky’’. On the other hand, the Laplacian encoding [19] produces visually nicer results (b). Our approach (c) provides even better results
as measured by the RMSE, KG and FMPD metrics, while in the DAME metric, the Laplacian encoding is slightly better. Colour-coded is the distance of each vertex to its
original position. The close-ups in the second row show the different level of distortion for the aforementioned approaches. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

algorithm significantly improves over the parallelogram predictor
rates, but itmay be overcomeby the high-pass quantization. On the
other hand, considering the error in terms of vertex displacement,
our technique outperforms the other two approaches. In Fig. 13we
also provide a visual comparison of the same mesh compressed at
different compression rates, in order to show the different amount
of visual error introduced by the process.

The timings in the encoding process mostly depend not only
on the size of the mesh in terms of number of vertices, but also
on the complexity of the error evaluation and the number of
iterations required to reach the final configuration. Consequently,
the encoding is usually slower than common techniques, since
the number of iterations may easily reach 20 or 30. On the other
hand, the decoding step is much faster: the decoder does a single



S. Marras et al. / Computer-Aided Design ( ) – 9

Table 1
Timings for encoding and decoding of several meshes. Timings are expressed in milliseconds. Each mesh is compressed with a KG-error of about 0.0001.

Vertices Proposed Parallelogram High-pass
iters. enc. dec. enc. dec. enc. dec.

Homer 5,103 22 469 7 5 5 11 68
Horse 8,431 22 725 13 9 8 18 122
Samba 9,971 24 1,117 15 11 10 26 160
Hippo 22,260 45 4,249 41 24 24 55 372
James 39,864 12 2,249 82 65 66 131 562
Elephant 42,321 23 4,460 64 44 42 146 603
Armadillo 165,954 23 23,873 362 338 351 992 3,335
Welsh dragon 1,105,352 26 71,674 2431 2044 2083 6227 30,619

Fig. 13. The Homer dataset, compressed at different bitrates, using the proposed
adaptive quantization approach, optimized for the DAME metric. Improvement is
significant for low compression rates, while the difference is negligible for higher
compression rates.

parallelogram predictor pass to decode both the depth and the bit-
streams of the basemesh, then it reconstructs themesh one vertex
at a time. The Laplacian smoothing, however, introduces a small
overhead in the decoding process. Table 1 compares the timings
on both sides against the performances of other techniques.

5. Conclusions and future work

We presented an algorithm that allows compressing a triangle
mesh in a format oriented at progressive transmission, combining
aspects of both single-rate and progressive paradigms. It can
be easily adapted to work with any kind of metric, achieving
considerable improvements for perception-based error metrics.

The experiments show that our technique represents a reasonable
trade-off between the visual error and the absolute vertex
displacement. It outperforms the traditional and still widely used
parallelogram predictor in terms of perception-related error, with
an improvement of up to 15% in terms of data rate. In some cases,
our algorithm is outperformed by the Laplacian encoding of the
mesh, yet at the same time it provides other features that make
it more attractive:

• The decompression speed of our approach is usually more than
10 times faster, which is an important property for practical
applications. Since the time needed for the decompression is
linear in number of mesh vertices, while the decompression
in Laplacian encoding involves solving a large system of linear
equations, it is likely that the performance gap will become
even larger for more detailed meshes.

• Thanks to the octree spatial partitioning, our technique pro-
vides considerably improved performance in terms of absolute
vertex displacements, which is of importance in practical situ-
ations where multiple objects interact with each other.

• Our algorithm is able to provide progressive transmission and
decoding of a mesh, as demonstrated in Fig. 14.

One of the main limitations of our technique is related to
the high cost of the encoding process, especially when compared
to other techniques. However, we believe that this should not
represent a problem, since the decoding process is comparable to
the other state-of-the-art methods and the encoding part of the
process can be performed in a batch process on the encoder side.

In the future we plan to extend our technique in order to work
with encoding approaches based on differential coordinates. In
these techniques it is not possible to locally refine the precision

Fig. 14. The proposed approach can also be used for progressive transmission and encoding of a mesh. The base mesh (24 bits per vertex) is encoded, transmitted, and
decoded as a single unit, using the parallelogram predictor approach. Themesh, while not as bad as the coarsest version, still exhibits roughness on some parts of the surface.
After having transmitted and decoded 40% of the refinement bits, the roughness is significantly reduced. However, artefacts are still visible on some parts of the mesh, such
as the trunk (see close-up), the ears, and the tail. If the client requests more bits in order to improve the quality of the shape, we transmit and decode another 40% of the
refinement bits. As a result, the distortion on the trunk almost vanishes, with only few vertices, at the end of the trunk, still misplaced. In case we need more precision, we
can transmit and decode the remaining bits, getting rid of the distortion and reaching the final configuration of the mesh.
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in vertex reconstruction, due to the nature of the problem.
We plan to include the adaptive quantization in the setting by
introducing different levels of quantization in the process, aiming
at improving the compression rate without significantly affecting
the visual error. Other future work aims at reducing the data rate
by developing both a depth predictor, exploiting the correlation
between vertices, errormetric, and octree depth, and a refinement-
bits-predictor, since the arithmetic encoding does not usually bring
any significant gain.
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