
IMPROVEMENTS OF MPEG-4 STANDARD FAMC FOR EFFICIENT 3D ANIMATION
COMPRESSION

Oldřich Petřı́k (opetrik@kiv.zcu.cz), Libor Váša (lvasa@kiv.zcu.cz)

University of West Bohemia, Dept. of Computer Science and Engineering
Univerzitnı́ 22, Plzeň, Czech Republic http://graphics.zcu.cz

ABSTRACT

Advances in both graphics hardware and scanning technology
have allowed for retrieving and rendering complex 3D models
with thousands of vertices. With the recent popularity gain of
interactive web applications, the data size is beginning to be
the tightest bottleneck, especially for detailed 3D animations.
The MPEG-4 standard was recently supplemented with an al-
gorithm for compression of dynamic triangle meshes called
Frame-based Animated Mesh Compression, which is consid-
ered the state of the art in this area. We have thoroughly
analysed the algorithm and identified some weak spots and
unclarities. In this paper, we present several improvements
and optimisations, which attempt to resolve the problems we
found. These changes result in combined performance gain
of up to 32 percent on tested datasets.

Index Terms— dynamic mesh, compression, 3D anima-
tion, FAMC, MPEG-4

1. INTRODUCTION AND RELATED WORK

As the technology of 3D scanning technologies and graph-
ics hardware evolve, they allow for retrieving and rendering
complex 3D models with many thousands of vertices, often
also with time variable positions. Such models with constant
connectivity and dynamic geometry are usually referred to as
dynamic meshes. These 3D animations are applied in many
areas. They are a crucial part of 3D television, and interac-
tive applications, such as computer games and virtual reality.
With the growing popularity of web-based interactive applica-
tions, the main issue is quickly becoming to be the data size of
these detailed animated models. Over the last decade, many
dynamic mesh compression algorithms were developed. Re-
cently, one of them, called Frame-based Dynamic Mesh Com-
pression by Mamou et al. [1], was accepted as the MPEG-4
standard for dynamic triangle mesh compression [2]. This al-
gorithm is considered the state of the art in this area.

This work has been supported by the Ministry of Education, Youth and
Sports of the Czech Republic under the research program LC-06008 (Center
for Computer Graphics).

978-1-61284-162-5/11/$26.00 c© 2011 IEEE

Since its standardisation, several improvements to the al-
gorithm were proposed. Mamou et al. suggested using Princi-
pal Component Analysis (PCA), or optimised Discrete Wavelet
Transform (DWT) with bit allocation instead of Discrete Co-
sine Transform (DCT) to encode the transformed data [3].
Recently, Bici and Akar have introduced new predictors for
the Layered Decomposition step [4]. We have focused on
the clustering and transformation stages prior to the encod-
ing step and adjusted these stages to further improve the rate-
distortion (RD) performance of the algorithm.

2. FAMC OVERVIEW

Since the rest of the paper deals with improvements of and
additions to the FAMC algorithm, we will now describe it
very briefly. To fully understand the details of the algorithm,
and this paper, please refer to the MPEG-4 standard [2] and
Mamou et al. [1].

The FAMC algorithm is based on an improved version of
the skinning approach by Mamou et al. [5]. The main idea
is to partition the vertices of the animated mesh into groups,
whose motion in each frame can be predicted well with a sin-
gle affine transform. This part of the a algorithm is called
Motion-based Segmentation. The segmentation is performed
by a series of half-edge collapse steps. At the beginning, each
vertex of the dynamic mesh is considered a cluster. All edges
of the mesh are given costs of their collapses. Each cost is cal-
culated as the error caused by virtually merging the clusters
of the two edge endpoints, and approximating the motion of
this new virtual cluster c relative to the first frame (key frame)
by a single affine transform Ac

f per each frame f using least
squares minimisation (LSM) over all vertices of c. In every
collapse step, the edge with the lowest cost is contracted to
a single vertex and a new cluster is formed by merging the
clusters of both endpoints of the edge. The costs of all af-
fected edges are then updated. Once the lowest collapse cost
exceeds a given threshold, the segmentation process stops.

Once the partition is complete, the motion of each cluster
c between the first frame and frame f is approximated by a
single affine transform per each frame. Each vertex v is then
assigned a vector of weights wv , which describes how the mo-
tion of v is influenced by the transforms of its parent cluster c

(wv
0) and of all neighbouring clusters of c (wv

1 . . . wv
Kc , where

Kc is the number of neighbours of c). Vector wv is obtained
using LSM over all the frames of the animation.

The weighted transforms are then applied to each vertex v
for each frame f and a correction vector (prediction residue)
ev
f = vf − ṽf between the original position vf and the trans-

formed position ṽf is calculated. Finally, the entire anima-
tion is stored as the group of the key frame mesh (includ-
ing connectivity) encoded by MPEG-4 3DMC [6], a partition
information, a transform matrix for each cluster and frame,
a weight vector for each vertex and a residue for each ver-
tex and frame. Transform matrices and residues may be pre-
dicted through Layered Decomposition [7], and/or encoded
using DCT or DWT. All the values are then uniformly quan-
tised with different quantisation constant for transform ma-
trix coefficients, cluster weights, and prediction residues. The
quantised values are encoded using CABAC.

3. IMPROVEMENTS

3.1. Handling More Connected Components

When reimplementing the FAMC algorithm, we have noticed,
that the original papers do not mention the behaviour of the
algorithm in the case of animations consisting of more con-
nected components. Since some sections of different com-
ponents can express similar movement (e.g. a head and its
eye balls), it would be advantageous to either cluster these
sections together, or include them to the neighbour clusters
of one another. However, since there is no edge connecting
the components, the clustering process cannot result in any of
these situations. According to the authors, in order to handle
such cases, a preprocessing step is performed introducing a
virtual edge per each component pair, which connects a ran-
dom vertex from one component with a random vertex from
the other component. However, this approach does not pro-
duce meaningful results in most situations and, in extreme
cases, leads to scattering parts of the clusters across the mesh.

To correctly handle multicomponent meshes, we add a
virtual edge for each pair of components connecting the clos-
est pair of vertices, one from each of the components. Be-
cause the distances between the vertices may change over
the span of the animation, we approximate the closest pair
by finding the pair with lowest distance of average positions.
This approach is much faster than finding the pair with the
lowest average distance, yet still accurate enough.

3.2. Overcoming Random Edge Collapses

As mentioned above, the clustering process is based on a suc-
cession of half-edge collapses in an order determined by col-
lapse costs. To calculate an edge-collapse cost, we need to
obtain the 4× 3 affine transform for the virtual cluster of the
edge. To uniquely determine this transform, the cluster has
to contain at least four vertices. However, at the beginning of

the segmentation process, there is one vertex per cluster only,
i.e. two vertices per edge. The original algorithm considers
the error for less than five vertices to be 0, which causes the
edges to collapse in a random manner, until all the remaining
edges have at least five linearly independent vertices. Hence,
this random phase of the segmentation may create clusters
containing vertices of completely unrelated movement, which
are then difficult to merge with other clusters.

We propose to include the neighbour vertices of the edge
endpoints to the virtual cluster until the endpoint clusters con-
tain enough vertices. Thus, the edges in areas of very affine-
like movement are collapsed first and the borders of the final
clusters much closely reflect the borders of areas of similar
motion. Since the decoder only needs the information about
the final clustering, this technique and the one above do not
induce any changes to the decoding scheme, and are therefore
fully compliant with the original MPEG-4 specification.

3.3. Weight Renormalisation

The quantisation step damages the values by adding quanti-
sation noise (QN) of magnitude in the interval [− 1

2q, 1
2q), q

being the quantisation step. We have noticed that the quan-
tisation of cluster weights, especially at low bitrates (under 1
bpfv), creates visible artefacts around cluster borders. These
artefacts are caused by the change in the sum of weights for
each vertex due to QN. The original sum of weights is ap-
proximately 1, as each cluster transform is calculated to be
used for the cluster directly, i.e. with unit weight. However,
the sum of weights damaged by QN diverges from this value
causing distortions in the vertex positions. We minimise these
distortions by renormalising the decoded weights ŵv

1 . . . ŵv
Kc

of vertex v in cluster c to sum up to 1 (equation 1). This is
similar to deblocking techniques used in video decoding.

norm(ŵv
i) =

ŵv
i

W v∑
k=0

ŵv
k

(1)

Performing the renormalisation alone introduces a small
distortion to the positions, as the sum of weights is not ex-
actly 1 for most vertices. To minimise this distortion, we have
altered the computation of the weights. Assuming the sum
of the weights equals to 1, we can express weight wv

i using
the rest of the weights (equation 2). Then, we substitute this
formula for wv

i in the original weight calculation system and
perform the least squares optimisation to obtain the weights
except wv

i . Finally, wv
i is calculated from equation 2. We

use this substitution for the parent cluster weight, wv
0 , which

makes the calculation independent on the number of neigh-
bour clusters. Experiments show that it also produces slightly
better results than substituting other weights.

wv
i = 1−

(
i−1∑
k=0

wv
k

)
−

(
W v∑

k=i+1

wv
k

)
(2)

original FAMC adjusted FAMC

dance chicken cow jump dance chicken cow jump
R D R D R D R D R D R D R D R D

K
G

0.25 2.50 0.99 4.33 0.49 3.14 0.26 2.49 0.25 1.31 0.86 4.30 0.54 2.39 0.25 2.32
0.57 0.57 2.52 1.01 1.18 1.19 0.59 1.27 0.52 0.43 2.28 0.99 1.11 1.19 0.60 1.18
0.98 0.22 3.36 0.56 1.46 0.96 1.01 0.79 0.90 0.18 3.24 0.52 1.39 0.96 0.96 0.80
1.30 0.15 4.46 0.32 2.11 0.69 1.46 0.53 1.29 0.12 4.32 0.27 2.01 0.68 1.40 0.54
2.00 0.08 5.85 0.19 3.13 0.46 2.11 0.34 1.86 0.07 5.75 0.15 3.24 0.40 2.11 0.33
2.61 0.05 7.38 0.12 5.11 0.26 3.17 0.20 2.42 0.04 7.40 0.07 5.01 0.23 3.15 0.20

ST
E

D
(×

1
0
0
0

) 0.23 0.79 1.64 1.70 0.68 1.18 0.20 1.20 0.22 0.44 1.50 1.38 0.66 1.13 0.14 1.03
0.43 0.28 2.30 1.25 1.14 0.97 0.23 0.78 0.39 0.23 2.06 1.04 1.06 0.95 0.17 0.78
0.92 0.17 3.43 0.81 1.59 0.86 0.29 0.61 0.67 0.14 2.73 0.78 1.46 0.84 0.25 0.61
1.50 0.12 4.43 0.53 2.20 0.76 0.58 0.49 1.35 0.10 4.21 0.37 2.04 0.70 0.42 0.49
3.38 0.06 6.39 0.26 3.13 0.64 1.04 0.41 3.01 0.05 6.05 0.19 2.96 0.57 0.87 0.41
4.57 0.03 7.40 0.19 7.25 0.36 4.62 0.22 4.13 0.03 7.40 0.10 6.85 0.35 4.48 0.22

Table 1. Compression performance of the original and our adjusted FAMC algorithm using KG and STED distortion measures.
The STED distortion values have been multiplied by 1000 to fit better into the table.

KG STED

dance chicken cow jump dance chicken cow jump

27.37 % 22.13 % 9.06 % 2.52 % 19.36 % 32.52 % 9.98 % 2.49 %

Table 2. Average distortion improvements of the adjusted algorithm over the original FAMC algorithm.

3.4. Weight Encoding

The aim of the segmentation process is to optimally cluster
the mesh, so that each cluster can be described using one
affine transform only. This means, that for nearly all the
vertices, the weight of the motion of their parent cluster, or
w0, is the highest weight. Moreover, by avoiding the random
edge collapses at the beginning of the segmentation process,
all vertices should belong to the cluster that influences their
movement the most. And since the sum of the weights is near
one, w0 also approaches 1.

To reflect this behaviour, instead of storing w0 directly, we
store 1− w0, which results in smaller absolute values. These
values are subsequently encoded using CABAC with Exp-
Golomb binariser [8], thus the closer the values are to zero,
the less space is required to store the information. Another
advantage of this approach is that it keeps the sum of weights
from dropping to 0. Even if the quantisation is so coarse that
it would cause all the weights to round to 0, weight w0 gets
decoded to 1, as 1− w0 was quantised to 0.

3.5. Affine Transform Encoding

According to the original design of the FAMC algorithm, the
affine transform of a cluster for each frame f is encoded by
transforming a selected set of four non-coplanar points,
M1

1 . . . M1
4 , by this transform and storing their transformed

positions, Mf
1 . . . Mf

4 . For the input points, we are using
the origin and the axis vectors of the base coordinate sys-
tem: M1

1 = (0, 0, 0), M1
2 = (1, 0, 0), M1

3 = (0, 1, 0), M1
4 =

(0, 0, 1). With this in mind, we can predict the transformed
position of the fourth point using cross product (equation 3)
and store only the prediction residue Mf

4 − M̃f
4 . The predic-

tion is perfect for any rigid transform, i.e. any combination of
rotation, translation, and uniform scaling.

M̃f
4 = Mf

1 + (Mf
2 −Mf

1)× (Mf
3 −Mf

1) (3)

4. EXPERIMENTAL RESULTS

We have implemented all the adjustments described above
into the FAMC encoder and evaluated its RD performance. In
table 1, you can see the results obtained with four different dy-
namic meshes on several configurations with and without the
adjustments using the commonly used Karni-Gotsman (KG)
distortion metric [9] and the new perception-based STED met-
ric by Váša and Skala [10]. The results are presented in the
form of bitrate R in bits per frame and vertex and distor-
tion D calculated using either the KG or the STED method
at optimal parameter configurations. Table 2 shows the aver-
age improvements in KG and STED distortions on the four
meshes. These values were calculated by integrating the ver-
tical relative difference between RD curves over the measured
bitrate interval. RD curves for the chicken and jump dynamic
meshes are shown in figure 1. The results show that our ad-
justments work best for chicken and dance mesh sequences,
while for the jump sequence, they have almost no contribu-
tion whatsoever. This behaviour depends on the vertex den-
sity of the mesh, which is much higher in the jump sequence.
The more vertices each cluster contains, the less error is in-

0.0

0.4

0.8

1.2

1.6

2.0

2.4

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

S
T

E
D

 d
is

to
rt

io
n

 (
×

1
0

0
0

)

bitrate [bits per frame and vertex]

original FAMC

adjusted FAMC

0.0

0.4

0.8

1.2

1.6

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

S
T

E
D

 d
is

to
rt

io
n

 (
×

1
0

0
0

)

bitrate [bits per frame and vertex]

original FAMC

adjusted FAMC

Fig. 1. RD curves of the original and the adjusted FAMC in STED metric for the chicken (left) and jump (right) animation.

troduced, when the cluster border deviates from its optimal
shape due to random edge collapses, and the more space is
required for the residual values, compared to the cluster trans-
forms, which do not change. Note also, that the jump, cow,
and dance animations only consist of one connected compo-
nent, thus the improved component connecting has no effect
in their cases. Computation time of the improved compres-
sor is only 0–6 % longer, while the improved clustering takes
60–170 % more time for single-component meshes and up to
300 % more time for multiple-component meshes. This time
could be, however, significantly reduced by using an appro-
priate data structure. The extent limitation for the paper does
not allow us to include more test cases, so we have included
the ones producing both the best and the worst results.

5. CONCLUSION

We present five individual adjustments to the MPEG-4 FAMC
algorithm for dynamic triangle mesh compression, which aim
at improving the RD performance of the algorithm by refin-
ing some of its original strategies. We propose a new way
of creating virtual edges between connected components and
a mechanism for avoiding random edge collapses to improve
the result of the segmentation stage. These adjustments main-
tain compatibility with the original standardised FAMC de-
coder. A new encoding of animation weights reduces the
space required to store the weights and a renormalisation step
attempts to recover the damage caused by quantisation. Fi-
nally, by adding a prediction step to the encoding of cluster
transforms, we were able to further improve the RD perfor-
mance. Depending on the properties of the input data, these
adjustments combined decrease the average distortion by up
to 27 % in Karni-Gotsman metric and 32 % in STED metric
on our test meshes.

6. REFERENCES

[1] K. Mamou, T. Zaharia, F. Prêteux, N. Stefanoski, and
J. Ostermann, “Frame-based compression of animated

meshes in MPEG-4,” in 2008 IEEE International Con-
ference on Multimedia and Expo, 2008, pp. 1121–1124.

[2] ISO, ISO/IEC 14496-16, amd. 2: Frame-based Ani-
mated Mesh Compression (FAMC), 2009.

[3] K. Mamou, T. Zaharia, F. Prêteux, A. Kamoun, F. Payan,
and M. Antonini, “Two optimizations of the MPEG-4
FAMC standard for enhanced compression of animated
3D meshes,” in 15th IEEE International Conference on
Image Processing, 2008, pp. 1764–1767.

[4] M. O. Bici and G. B. Akar, “Improved prediction for
layered predictive animated mesh compression,” in 17th
IEEE International Conference on Image Processing,
2010, pp. 3413–3416.

[5] K. Mamou, T. Zaharia, and F. Prêteux, “A skinning ap-
proach for dynamic 3D mesh compression,” Computer
Animation and Virtual Worlds, vol. 17, no. 3-4, pp. 337–
346, 2006.

[6] ISO, ISO/IEC 14496-2: Visual, 2001.

[7] N. Stefanoski, L. Xiaoliang, P. Klie, and J. Ostermann,
“Scalable linear predictive coding of time-consistent 3D
mesh sequences,” in 3DTV Conference, 2007, pp. 1–4.

[8] H. Kirchhoffer, D. Marpe, K. Müller, and T. Wiegand,
“Context-adaptive binary arithmetic coding for frame-
based animated mesh compression,” in 2008 IEEE In-
ternational Conference on Multimedia and Expo, 2008,
pp. 341–344.

[9] Z. Karni and C. Gotsman, “Compression of soft-body
animation sequences,” Computers and Graphics, vol.
28, pp. 25–34, 2004.

[10] L. Váša and V. Skala, “A perception correlated compar-
ison method for dynamic meshes,” IEEE Trns. on Vi-
sualization and Computer Graphics, vol. 17, no. 2, pp.
220–230, 2011.

